
Equational Proof-Planning by Dynamic Abstraction

Serge Autexier

�

CS Department

University of Saarland

Dieter Hutter

y

German Research Centre

for Arti�cial Intelligence

Abstract

We present a new abstraction designed for the purpose of equational proof-

planning. The abstraction maps a given equation into some partial representation

of its structure wrt. some given subterms common to both sides of the equation.

Thus, the abstraction of an equation is dynamic, since it dependents on the selec-

ted common subterms. Furthermore we sketch a heuristics based on the di�erence

reduction paradigm to ease the abstract proof plan construction.

1 Introduction

Proof planning allows to construct proofs in a hierarchical manner by decomposition of

the given goals in a sequel of subgoals. Our purpose is to use abstractions to obtain

the decomposition. According to [4] abstractions are mappings of a representation of a

problem, the ground problem, into a new representation, the abstract problem. Solving

the abstract problem results in a proof sketch in the ground space which guides the search.

In the past a series of abstractions have been investigated, but none had a real success in

equational proof-planning. Basically, these abstractions map formulas into some simpli�ed

structure (e.g., abstractions into sets of involved symbols or abstractions ignoring the

termlist of literals). As a result these abstractions either drop too much information and

thus, planning in the abstract space is rather unconstrained, or the proof search in the

abstract space has more or less the same complexity as on the ground space.

In the following we restrict ourselves on equality problems and present an abstraction

and heuristics to guide the abstract proof search. The abstraction of an equation is

parameterized by some common subterms of both sides of the equation and the attention

of the prover is focused to the sequel of function symbols governing the occurrences of

these subterms.

2 A Commented Example

To illustrate our ideas we will present a small example in the �eld of lattice-ordered groups.

In the following we inspect a proof of the theorem GRP175-1 of the TPTP library (cf. [11]):

8x; y: u(1; y) = y ! u(1; i(x)� (y � x)) = i(x)� (y � x) (1)

�

Fachbereich 14, Informatik, Universit�at des Saarlandes, Postfach 15 11 50, 66041 Saarbr�ucken, Ger-

many, autexier@cs.uni-sb.de

y

DFKI GmbH, Stuhlsatzenhausweg 3, 66123 Saarbr�ucken, Germany, hutter@dfki.de

1



Besides others, the following formulas are part of the axiomatization:

8X: 1� X = X (2)

8X: i(X)� X = 1 (3)

8X;Y;Z: X� u(Y;Z) = u(X� Y;X� Z) (4)

8X;Y;Z: u(X;Y)� Z = u(X� Z;Y � Z) (5)

Proving the given theorem results in proving the equality

u(1; i(x)� (y � x)) = i(x)� (y� x) (6) assuming u(1; y) = y (7)

Following the paradigm of di�erence reduction we �rst compare the function symbols

occurring on both sides of equation (6). Since u occurs on the left-hand side but not on

the right-hand side we have to get rid of the occurrence of u in (6) which suggests the use

of (7) as a bridge lemma. Thus, we establish a subgoal to enable the use of (7), which

results in a transformation of the left-hand side of (6) into a term, where u(1; y) occurs

as a subterm. During this transformation, u occurring on the top level of the left-hand

side of (6) has to be \moved inside" toward the occurrence of y. More formally, we are

interested in the path from top level to the occurrence of y and how \close" u is located

to y. For example in the left term of (6) y occurs in position h2; 2; 1i and is governed by

a sequel of functions u;�;�. Thus, the idea of the abstraction is to use a representation

combining both the position of a term and the sequel of functions down to it: thus, we

describe the structure of the left term wrt. the occurrence of y by hu

2

;�

2

;�

1

i

y

. Since we

are interested in moving u \down to" y, we inspect our database to �nd equations \moving

down" functions u. For this purpose we proceed the same way for the axioms as we did for

the theorem. For example we consider the occurrences of Z in equation (4): the structures

of the left and right hand sides of (4) wrt. Z are represented by h�

2

; u

2

i

Z

and hu

2

;�

2

i

Z

:

Thus, if we could apply (4) from right to left on the left hand side of the theorem, we

could \move" u towards y. Analogously, the next step suggests the application of (5) and

�nally the application of the condition (7) to remove the function u. Thus, the suggested

proof plan found when using this abstraction is to enable the applications of (4), (5) and

(7) (in this order, cf. Figure 1). The re�nement of this proof plan succeeds in the proof

viewed in Figure 1. Thereby the applications of (3) and (2) are only performed to enable

the applications of (4) and (5) respectively, as suggested by the proof plan.

3 Abstraction

In the previous example we measured the progress of the proof by comparing the paths

from top level to the occurrence of y. Thereby did the occurrences of y denote the invariant

parts or skeleton of our example. In this section we will formalize this idea into a notion

of S-terms that are speci�c structural abstractions of terms.

In a �rst step we enrich occurrences � of a term t by the function symbols occurring

along the denoted path from the top level to the denoted subterm tj�. Thus, an enriched

occurrence ~� is a sequel of function symbols where each symbol is indexed by an argument

position. For instance, hu

1

;�

1

i is an enriched occurrence of u(X;Y)� Z corresponding to

the standard occurrence h1; 1i. Each enriched occurrence ~� of t denotes a subterm tj~�.

Thus, ~�

tj~�

describes a speci�c subterm tj~� of t and the information about the path ~� from

top level to its occurrence. A set T = f~�

1

tj~�

1

; : : : ; ~�

n

tj~�

n

g is called an S-term if all ~�

i

denote

independent positions. A S-term abstracts from all parts of t which are not on the path

to one of the speci�ed subterms tj~�

i

. The interpretation of a S-term T = f~�

1

u

1

; : : : ; ~�

n

u

n

g is

the set of terms t for which T is a legal abstraction, i.e., ~�

i

are enriched occurrences of t

2



Proof Abstract Proof

u(1; i(x) � (y � x)) = i(x)� (y � x)

fhu

2

;�

2

;�

1

i

y

g = fh�

2

;�

1

i

y

g

u(i(x)� x; i(x)� (y � x)) = i(x)� (y � x)

i(x)� u(x; (y � x)) = i(x)� (y � x)

fh�

2

; u

2

;�

1

i

y

g = fh�

2

;�

1

i

y

g

i(x)� u(1� x; y� x) = i(x)� (y � x)

i(x)� (u(1; y) � x) = i(x)� (y � x)

fh�

2

;�

1

; u

2

i

y

g = fh�

2

;�

1

i

y

g

i(x)� (y� x) = i(x)� (y � x)

fh�

2

;�

1

i

y

g = fh�

2

;�

1

i

y

g

(3)

(4)

(2)

(5)

(7)

(8)

 

(9)

 

(10)

!

Figure 1: First-order proof and abstract proof of theorem (6)

and tj~�

i

= u

i

. The empty set is a S-term which denotes all terms while fhi

t

g characterizes

exactly t.

In order to manipulate S-terms we introduce S-equations f~�

1

q

1

; : : : ; ~�

n

q

n

g =

f~�

01

r

1

; : : : ; ~�

0m

r

m

g which are equations over S-terms such that fq

1

; : : : ; q

n

g = fr

1

; : : : ; r

m

g

holds, i.e. the set of selected subterms (of the terms to be abstracted) are identical

on both sides. For example fh�

1

i

X

g = fhu

1

;�

1

i

X

; hu

2

;�

1

i

X

g is an S-equation while

fh�

1

i

X

; h�

2

; u

1

i

Y

g = fhu

1

;�

1

i

X

; hu

2

;�

1

i

X

g is not.

In order to formalize the abstract deduction process (the so-called S-deduction), we

introduce a notion of substitution, namely a S-substitution and de�ne the application of

a S-equation onto a S-term (see [1] for the details).

We illustrate the usage of our S-abstraction by our introductory example of section 2.

The S-equations are abstractions of the equations (4), (5) and (7), where (4) is abstracted

wrt. the occurrences of Z, (5) wrt. the occurrences of Y and (7) wrt. the occurrences of y:

fh�

2

; u

2

i

Z

g = fhu

2

;�

2

i

Z

g (8)

fh�

1

; u

2

i

Y

g = fhu

2

;�

1

i

Y

g (9)

fhu

2

i

y

g = fhi

y

g (10)

In Figure 1 the �rst-order proof of theorem GRP175-1 and its corresponding abstract proof

are presented. The arrow under the equation number in the abstract proof indicates in

which direction the S-equation has been applied.

3.1 Re�nements

Given a deduction in the abstract space of the S-abstraction, we use it as a proof sketch

in the ground space. Indeed does an abstract proof provide a set of partially ordered

proof-plans for the original �rst-order logic theorem. Thereby does each deduction step in

the abstract space correspond to a sequel of deduction steps in the ground space. In order

to obtain a �rst-order proof, we have to re�ne each abstract deduction step S !

Q=R

T to

a �rst-order deduction s ! : : : !

q=r

! : : : t where S is a S-term of s and T is an S-term of

3



t. In general, each applied S-equation Q = R of an abstract deduction step corresponds to

a set of possible �rst-order equations. Hence, on the ground space we have to choose one

of these equations which may involve backtracking in case we fail to enable the application

of a chosen equation.

4 Heuristics

Given appropriate abstractions for proof planning, we now de�ne heuristics to guide the

proof search in the abstract space. For this purpose consider our abstract proof in Fig-

ure 1. Inspecting all S-terms occurring during the abstract deduction, we �nd a common

structure h�

2

;�

1

i in all of them. In order to prevent the common structure from be-

ing modi�ed we adapt the notion of Rippling (cf. [5, 2]) to enriched occurrences. Thus,

each element of an enriched occurrence is annotated by a colour-information specifying

whether this element belongs to the skeleton or to the wave-front. Considering an enriched

occurrence as a list, we obtain its skeleton by removing all elements which belong to the

wave-front. Throughout our example we illustrate elements of the wave-front by shading

them.

Given an equality problem we compute an abstracted equality problem S = T and

search for a common skeleton for the enriched occurrences of S and T . For example,

h�

2

;�

1

i is the common skeleton of h�

2

; u

2

;�

1

i and h�

2

;�

1

i. u

2

is a wave-front of the

�rst enriched occurrence. Similarly to the �rst-order case, there is no unique \maximal\

skeleton of two enriched occurrences.

We illustrate the use of colouring of an enriched occurrence by the following example.

Consider the �rst abstract equality problem of Figure 1, and there the two enriched oc-

currences of y. Using h�

2

;�

1

i as a common skeleton and shading the wave-fronts results

in the following coloured abstract equality problem: fhu

2

; �

2

;�

1

i

y

g = fh�

2

;�

1

i

y

g. Using

this colour annotation we are able to represent the di�erences of two S-terms such that we

are able to predict how the application of an S-equation changes the wave-fronts. In order

to apply a coloured S-equation Q = R on a coloured S-term S, the wave-fronts resp. the

skeleton of Q have to match with the wave-fronts resp. the skeleton of S. For example,

consider the abstraction of axiom (4). The enriched occurrences of the subterm Z can

be coloured in the following manner: fhu

2

; �

2

i

Z

g = fh�

2

; u

2

i

Z

g: If the above equation is

applied from left to right on a coloured S-term S, then we can predict that the wave-front

belonging to the enriched occurrence of Z will be moved toward top level in S, and the

skeletons will remain unchanged. Similarly, an abstract equation fhu

2

i

y

g = fhi

y

g will

remove the wave-front u

2

in the enriched occurrence of y.

Thus, we classify the S-equations obtained by abstraction of the axioms according to

their behaviour in case of application. We search for a \maximal" common skeleton of the

left- and right-hand sides, add the annotations to the S-equations, and characterize them

whether they will remove a wave-front, or move a wave-front up or inside. For example is

the �rst coloured S-equation classi�ed as a \moving up" S-equation and the second as a

\removing" S-equation.

Summing up, given an equality problem s = t we compute an abstract equality problem

S = T and annotate the enriched occurrences of both to obtain a common skeleton. Then

appropriate coloured abstract equations are applied which will manipulate the wave-fronts

until all di�erences are eliminated.

The presented abstraction as well as the heuristics have been implemented in the InKa-

system (cf. [6]) and successfully tested on several examples. E.g., does the plan search of

4



the above example and its re�nement take less than a second on a SPARC 20. Thereby

theoretical properties (cf. [1] for more details) allowed an e�cient implementation of the

S-abstraction.

In the above example the proof plan search is a simple task, when using the presented

Rippling-like heuristic; but even in more challenging examples simple proof plan search

heuristics result in good hints about how the proof can be performed. E.g., this is the

case for theorem BOO002 from the TPTP-library. A simple exhaustive proof plan search

on the abstraction of the theorem results in a �ve-steps abstract proof plan; while re�ning

these steps, some complex problems occur, but these are easy to solve by using di�erence

reduction techniques based on classical Rippling over �rst-order terms.

5 Related Works

In the history of AI research a wide variety of abstractions have been proposed. Further,

a theory of abstraction has been developed by Giunchiglia and Walsh (cf. [4]), which led

to the development of ABSFOL (cf. [3]). However, it is di�cult to encode our abstraction

in ABSFOL, since the language to describe abstractions does not allow to de�ne directly

parameterized abstractions.

Among all kinds of abstractions, there are especially two abstractions comparable to

our abstraction, namely Gazing, and Grazing an extension of it, although the �rst has

not been developed for the purpose of proof-planning. The idea of Gazing (cf. [8]) is to

map in a �rst step �rst-order formulas onto propositional formulas and thus is not useful

for equational proof-planning. In a second step Gazing additionally takes all the occur-

ring function symbols into account together with some polarity information. Since the

relationship between the occurring function symbols is omitted, the proof search is rather

unconstrained. To �x these problems, Grazing (cf. [9]) has been developed, which pre-

serves the term-structure by abstracting only bounded variables. This, however, preserves

too much structure and thus hampers a powerful equational proof-planning. Therefore

our abstraction is more adequate for the purposes of equality proof planning, especially

because of its 
exibility. However, this additional 
exibility leads to a larger branching

factor in the plan search space. Thus, some powerful constraints, like colouring, have

been developed to compensate this e�ect. Nevertheless, the additional 
exibility in the

abstraction leads to planning techniques dealing much better with equality problems than

the gazing technique.

6 Conclusion

We presented parameterized abstractions of terms which are used to compute proof

sketches in the setting of hierarchical proof planning. Besides the heuristics given in

section 4 we developed other techniques to equalize enriched occurrences with the help of

S-equations. These heuristics make use of the fact that enriched occurrences are basically

strings and search algorithms based on strings can be used (cf. [1]).

Although S-deductions are only de�ned in an equational setting, the idea can be

lifted to general �rst-order formulas. Then our approach can be used to equalize speci�c

subformulas of a theorem in order to enable e.g. a resolution step.

Classical theorem provers may have a better performance on some problems, but the

main advantage of our planning approach is, that we can allow user interaction on a stra-

5



tegic level (i.e. on the level of the abstractions), which is essential when dealing e.g. with

proof obligations occurring in the veri�cation of realistic software components. Further-

more, the hierarchical proof planning procedure supports a good proof presentation, which

is rather di�cult with saturation based theorem provers. Actually, the abstract planning

steps provide a simple mechanism in order to divide a proof into di�erent parts, which

can be explained independently. Another advantage of the described heuristics is that,

like the rippling heuristics for �rst-order logic proofs, the proof-plan search is more or

less independent of the number of axioms in a given database, which is a not the case for

saturation based theorem provers.

References

[1] S. Autexier. An Abstraction for Proof-Planning: The S-Abstraction. SEKI Report

SR-97-05, Universit�at des Saarlandes, Fachbereich Informatik, June 1997.

[2] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland. Extension to the rippling-out

tactic for guiding inductive proofs. In Stickel [10], pages 132{146.

[3] F. Giunchiglia and A. Villa�orita. ABSFOL: A proof checker with abstraction. In

McRobbie and Slaney [7], pages 136{140.

[4] F. Giunchiglia and T. Walsh. A Theory of Abstraction. Journal of Arti�cial Intelli-

gence, 56(2-3):323{390, 1992.

[5] D. Hutter. Guiding Induction Proofs. In Stickel [10].

[6] D. Hutter and C. Sengler. INKA - The Next Generation. In McRobbie/Slaney [7].

[7] M. A. McRobbie and J. K. Slaney, editors. Proceedings of the 13

th

International

Conference on Automated Deduction (CADE), volume 1104 of LNCS , 1996, Springer.

[8] D. Plummer. Gazing: Controlling the Use of Rewrite Rules. PhD thesis, Department

of Arti�cial Intelligence, University of Edinburgh, 1987.

[9] A. Simpson. Grazing: A stand alone Tactic for Theoretical Inference. MSc Thesis,

Department of Arti�cial Intelligence, University of Edinburgh, 1988.

[10] M. E. Stickel, editor. Proceedings 10

th

International Conference on Automated De-

duction (CADE), volume 449 of LNAI . Springer, July 1990.

[11] G. Sutcli� and Ch. B. Suttner. The TPTP Problem Library. AR-96-02, Institut f�ur

Informatik, TU-M�unchen, June 1996.

6


