
Up-to-Isomorphism Enumeration of Finite Models -

The Monadic Case

Thierry Boy de la Tour

�

LEIBNIZ - IMAG

1 Introduction

Few systems for �nite model enumeration use pruning techniques based on the notion of

isomorphism between �nite interpretations (see [2],[1]), known to correspond to elementary

equivalence of interpretations. These pruning techniques have two important restrictions:

only special isomorphisms are considered, and only the last interpretation which has not

been eliminated this way is tested for isomorphism with new candidate interpretations,

which may be isomorphic with previous interpretations. The �rst point is due to the fact

that there are many isomorphisms (n! for an interpretation of size n), isomorphism testing

is time consuming, and it would be pointless to spend more time on such tests than would

require the evaluation of the formula on the candidate interpretation. This is even more

likely to happen were all the previous interpretations to be tested for isomorphism. Hence

only a very limited amount of isomorphism testing may be allowed, and it may appear

hopeless to save time by avoiding double work in this context.

On the other hand, we should consider the fact that the amount of double work may

be huge, since every interpretation can have up to n! isomorphic interpretations. Which is

to say that the number of isomorphism classes (IC) of interpretations may be far less than

the number of interpretations. This is ground for attempting a direct enumeration of these

IC, which would therefore avoid (as much as possible) the actual testing for isomorphism.

More precisely, our aim is not to build explicitely the IC of interpretations one after

another, but to enumerate objects representative of each IC, and such that at least one

element of the IC can be e�ciently computed from this object. This is performed by

an analysis of the structure of the IC of �rst-order objects (functions and relations, see

section 2 for the analysis of monadic objects) and a group-theoretic study of how the IC

of interpretations relate with the IC of objects of which they are composed (section 4).

The up-to-isomorphism enumeration appear to be quite complex, though some sim-

ilarities occur at di�erent levels of the enumeration, which makes it very convenient to

design the procedure as a so-called \Successor Machine" (see section 3), constructed by

means of elementary general-purpose successor functions. An important requirement of

the enumeration is the possibility to switch to sub-enumeration ensuring minimal changes

with the next interpretation (this is the notion of refutation in an interpretation from [1]),

and we give some promising hints about the application of this idea to our framework in

section 5. Since the structure of IC of functions are very di�erent whether image and range

sets are equal or not, we adopt a many-sorted account of �nite semantics of �rst-order

logic.

�

46, avenue F�elix Viallet, 38031 Grenoble Cedex, FRANCE, Thierry.Boy-de-la-Tour@imag.fr

29



We are given a �nite set T of basic types, or sorts, from which we build the set of

�rst-order types T

1

=

S

k2IN

T

k

� (T] fog). They are noted t

1

� : : :� t

k

! t, and said to

be homogenous if t

1

= : : : = t

k

= t. A T-signature is a �nite sequence � = (�

1

; : : : ; �

n

) of

elements of T

1

(intended as the types of the symbols s

1

: : : s

n

with which the formulas are

written). We are also given a function n : T ! IN

�

, in order to interpret sorts t 2 T as

t

n

= f1

t

; : : : ; n(t)

t

g (integers indexed by t so that t 6= t

0

) t

n

\ t

0n

= ;.) Then o

n

= f>;?g

are the truth values and (t

1

� : : :� t

k

! t)

n

is the set of functions from t

n

1

� : : :� t

n

k

to t

n

.

The set of n-�-interpretations is �

n

=

Q

n

i=1

�

n

i

.

Let G =

Q

t2T

Sym t

n

be the set of n-T-isomorphisms (G is the biggest permutation

group on

U

t2T

t

n

which stabilizes t

n

for all t 2 T). 8� 2 T

1

, we de�ne the operation

of G on �

n

as follows: 8f 2 (t

1

� : : : � t

k

! t)

n

;8� 2 G;8hi

1

; : : : ; i

k

i 2 t

n

1

� : : : �

t

n

k

; f

�

(i

1

�; : : : ; i

k

�) = f(i

1

; : : : ; i

k

)� (i.e. f

�

2 �

n

is obtained by applying � to the graph

of f 2 �

n

.) Remember that o is not a sort, hence >� = > and ?� = ?. The operation

of G on n-�-interpretations is a standard extension of the previous one: 8hf

1

; : : : ; f

n

i 2

�

n

; hf

1

; : : : ; f

n

i

�

= hf

�

1

; : : : ; f

�

n

i. Hence 8=;=

0

2 �

n

, = and =

0

are isomorphic i� =

G

= =

0G

,

where =

G

= f=

�

=� 2 Gg is the G-orbit of =, hence IC may be considered as orbits, and

our aim is to enumerate the orbit partition OPart(�

n

;G) = f=

G

== 2 �

n

g.

2 G-orbits of monadic functions

2.1 monadic relations

Let � = t! o with t 2 T. 8R 2 �

n

, let c(R) = card(R

�1

(>)). We have 0 � c(R) � n(t),

and from all k 2 f0; : : : ; n(t)g we may build a relation R

k

2 �

n

such that c(R

k

) = k (for

instance R

k

(i

t

) = > i� i � k.) It is very easy to prove that 8� 2 G; c(R

�

) = c(R), as well

as the following converse: 8R;R

0

2 �

n

, if c(R) = c(R

0

) then we may build a � 2 G such that

R

�

= R

0

. This means that R

G

= R

0G

(R and R

0

are isomorphic) i� c(R) = c(R

0

). Hence

enumerating OPart(�

n

;G) only requires the enumeration of the integers k 2 f0; : : : ; n(t)g

and the computation of the relations R

k

. This enumeration is exact since no orbit is

visited twice, i.e. OPart(�

n

;G) =

U

n(t)

k=0

fR

G

k

g.

2.2 heterogenous functions

Let � = t! t

0

with t; t

0

2 T; t 6= t

0

. 8f 2 �

n

, let p(f) = [card(f

�1

(i))=i 2 t

0n

^ f

�1

(i) 6= ;]

(square brackets are for multi-sets.) We clearly have 1 � card(p(f)) � n(t

0

) and

P

p(f) =

n(t), hence p(f) is a partition of n(t) with at most n(t

0

) summands (a n(t

0

)

�

-partition.)

Given such a partition P , it is easy to build a function f

P

2 �

n

such that p(f

P

) = P .

As above, we have 8f; f

0

2 �

n

; f

G

= f

0G

i� p(f) = p(f

0

). Hence we obtain an exact

enumeration of OPart(�

n

;G) from any exact enumeration of the set of n(t

0

)

�

-partitions

of n(t). We may begin with the 1-partition [n(t)], then the 2-partitions starting from

[n(t)� 1; 1] and ending with [E(

n(t) + 1

2

); E(

n(t)

2

)], etc.

2.3 homogenous functions

Let � = t! t with t 2 T. It is standard in the context of �nite interpretations to represent

functions f 2 �

n

as sequences hf(1

t

); : : : ; f(n(t)

t

)i, but we may as well represent them as

directed graphs G(f) with set of vertices t

n

and set of edges fhi; f(i)i=i 2 t

n

g. We then

interpret isomorphisms between functions as graph isomorphisms (f

G

= f

0G

i� G(f) and

30



G(f) are isomorphic.) Clearly, the graphs obtained this way have output degree one, which

means that every connex component contains a cycle (paths have no ends, but the number

of vertices is �nite), and that the graphs connected to this cycle can only be trees. It is

easy to see that the graph isomorphism problem on these monadic graphs is polynomial.

Providing an e�cient non-redundant (up to isomorphism) enumeration of monadic graphs

of a given size is however not a trivial task. Next section, this is pro�tably decomposed

into the problems of enumerating connex components, cycles, \cyclic-graftings" and trees.

3 The Successor Machine

The principle of the successor machine stems from additioner circuits. It can be seen as

a machine having (at least) an input signal succ and an output signal carry. It also has

an internal state, coding an element in a �nite linear order. Each time the succ signal is

activated, the machine changes its internal state to the code of the successor (in the linear

order) of the previously encoded element, unless it was the maximal element, in which case

the machine activates its output carry signal instead. For instance, a bit is a successor

machine with two possible states 0 and 1. In order to compute successors of n-bits integers,

we may build a machine CP with (apart from succ and carry) outputs succ

1

. . . succ

n

plugged in the succ inputs of the bits m

1

: : : m

n

, and inputs carry

1

. . . carry

n

coming

from m

1

: : : m

n

. The internal structure of CP is very simple: succ is connected to succ

1

,

carry to carry

n

and 8i 2 f1; : : : ; n� 1g, carry

i

is connected to succ

i+1

. Provided each

bit comes back to its 0 state when it sends a carry signal, the machine CP (m

1

; : : : ;m

n

)

enumerates the n-bits integers in the usual order. The machine CP actually enumerates

the Cartesian product of the sets enumerated by its sub-machines, in the lexicographic

order. The real machine is a bit more complex, it sends and receives some zero signals,

etc. and is programmed in object-oriented style.

But we need more complex products in order to perform an up-to-isomorphism enu-

meration of monadic graphs. For instance, if C

2

= fa; bg is a set of representants of the

orbits of connex monadic graphs of size 2, then an enumeration of the monadic graphs of

size 4 may contain ha; ai; ha; bi; hb; bi, skipping hb; ai from the Cartesian product C

2

� C

2

since it is isomorphic to ha; bi. More generally, considering k sets S

1

; : : : ; S

k

either equal or

disjoint two by two, and a subgroup G<<Sym k such that 8� 2 G;8i 2 f1 : : : kg; S

i�

= S

i

,

then a G-product of S

1

; : : : ; S

k

is any minimal P � S

1

� : : :�S

k

verifying: 8hx

1

; : : : ; x

k

i 2

S

1

� : : : � S

k

;9� 2 G; hx

1�

; : : : ; x

k�

i 2 P . We are actually interested in the symmetric

product

Q

s

, which is the G-product with the biggest possible G<<Sym k (according to the

relations among the S

i

's), and the circular product

Q

c

, obtained with the biggest possible

G<< < (1; 2; : : : ; k) > (cyclic group of order k). Hence the set enumerated above is the

symmetric product C

2

�

s

C

2

. Trees can also be enumerated this way: if T

n

is a set of

representants of IC of trees of size n, we have if n > 1

T

n

=

]

1�k�n�1

]

p2Part

k

(n�1)

Y

1�i�k

s

T

p

i

where k is the (input) degree of the root, n�1 the total size of the k subtrees, Part

k

(n�1)

is the set of k-partitions of n�1 (to be enumerated by a successor machine), and p

i

the i

th

element of p considered as a list. Similarly, representants of IC of monadic graphs of size

31



n can be enumerated by the successor machine corresponding to the following expression:

]

1�k�n

]

p2Part

k

(n)

Y

1�i�k

s

]

1�c�p

i

]

q2Part

c

(p

i

)

]

q

0

2CL(q)

Y

1�j�c

c

T

q

0

j

where k is the number of connex components, the i

th

having size p

i

and containing a

cycle of size c, on which are grafted c trees of sizes q

1

; : : : ; q

c

in the order given by the lists

q

0

2 CL(q), enumerating all possible permutations of q up to cyclic permutations.

One feature necessary for the symmetric and circular products is the possibility to

perform assignment on coordinates (the internal state of one machine is set to the internal

state of another). It is however remarkable that no equality testing is necessary, and that

none of these elementary successor machines needs to keep track of passed work, hence

performing a space-less search. A prototype implementation of the machine for monadic

graphs has been programmed in OCAML. Here is a summary of the results (the last

column yields the average number of automorphisms of the corresponding graphs.)

n nb of functions (= n

n

) m = nb of orbits

mn!

n

n

5 3; 125 47 1:805

10 10; 000; 000; 000 7; 318 2:655

15 437; 893; 890; 380; 859; 375 1; 328; 993 3:9687

20 1; 048; 576 � 10

20

258; 604; 642 6:0001

4 G-orbits of n-�-interpretations

For example, consider the orbit of constant functions f

�

i=i 2 t

n

g =

�

1

t

G

, and the single

orbit of a t-constant 1

G

t

= t

n

. In order to enumerate OPart(�

n

;G) for � = ht ! t; ti, we

have to enumerate the product

�

1

t

G

� 1

G

t

, and it is clear that h

�

1

t

; 1

t

i

G

is only a subset of

it; we also need h

�

1

t

; 2

t

i

G

(or h

�

2

t

; 1

t

i

G

). Hence OPart(�

n

;G) contains much more elements

than the product of the OPart(�

i

;G). We can prove that OPart(�

n

;G) is equal to:

]

o

1

2OPart(�

n

1

;G

(1)

)

]

o

2

2OPart(�

n

2

;G

(2)

)

: : :

]

o

n

2OPart(�

n

n

;G

(n)

)

fho

1

; o

2

; : : : ; o

n

i

G

g

where o

i

is any element of o

i

, G

(1)

= G and G

(i+1)

= G

(i)

o

i

= f� 2 G

(i)

=o

i

�

= o

i

g is the

stabilizer of o

i

in G

(i)

. The fact that these unions are disjoint means that we can provide an

exact enumeration of OPart(�

n

;G) whenever we are able to provide exact enumerations

of OPart(�

n

i

;G

(i)

), and also that the number of representants computed this way does not

depend on the order in which the �

i

's are ordered in �, though obviously the G

(i)

's do.

Hence the enumeration of OPart(�

n

;G) sketched above for monadic types does not

seem to be general enough. However, a direct enumeration of (and the design of a successor

machine for) OPart(�

n

;G) for any given G<<G seems hopelessly tricky, and we rather

adopt a general solution stemming from the fact that OPart(�

n

;G) is a re�nement of

OPart(�

n

;G). Hence any G-orbit can be obtained as (o

�

)

G

where o 2 OPart(�

n

;G) and

� 2 G. Since o =

S

�2G

(o

�

)

G

, the problem is to �nd a suitable subset f�

1

; : : : ; �

m

g � G

in order to make this union a disjoint one, hence obtaining an exact enumeration of

OPart(�

n

;G). It is not di�cult to prove that fG

o

�

i

G=1 � i � mg should be a partition

of G, hence computing the �

i

's is a double coset enumeration problem, well studied in

computational group theory, which provides e�cient algorithms for computing such double

32



coset representatives. This is also true for the computation of stabilizers, and we are

therefore able to perform an exact enumeration of OPart(�

n

;G) from exact enumerations

of OPart(�

n

;G).

5 Successors with minimal changes

Not all values set by an interpretation = may be necessary to evaluate the formula to

?. Hence the evaluation process can easily yield a partial interpretation =

0

such that all

interpretations having =

0

as sub-interpretation are counter-models of the formula (see [1]

for details). Hence from = the enumeration may skip these interpretations, and reach

directly the smallest interpretation bigger than = which changes at least one value set by

=

0

. In our context, we may skip them if at least one member in their IC contains =

0

, hence

this sub-interpretation relation should be interpreted up-to-isomorphism.

The case of monadic heterogenous functions is particularly interesting. Since from any

f 2 (t ! t

0

)

n

can be computed p(f), a sub-interpretation of f can be interpreted as a

sub-partition P of p(f) as well, i.e. such that card(P ) � card(p(f)) and 9� a 1-1 function

(on multi-sets!) from P to p(f) such that 8i 2 P; i � �(i). An e�cient program has been

written in OCAML which, when given a partition p(f) and a sub-partition P , yields the

smallest partition (in the order sketched above) of which P is not a sub-partition, or sends

carry if there is none. An interesting application is the pigeon hole formula, which states

that a monadic heterogenous function is 1-1. When a �nite model is searched for with

n(t) = n + 1 (pigeons) and n(t

0

) = n (holes), the evaluation on the �rst interpretation

f yields ? and as sub-interpretation two pigeons i; j 2 t

n

such that f(i) = f(j). Hence

P = [2], and the next partition must not contain any a � 2. Since there is no n

�

-partition

of n+1 containing only ones, our program sends the carry signal, and the search is over.

This is more di�cult with monadic homogenous functions, since sub-interpretations

are subgraphs, and the problem of testing for inclusion of a forest in a tree is known to

be NP-Complete. We may however �nd some partial solutions, for instance if a connex

component receives a succ while only, but not all, values of its cycle have been used, then

it can send a carry, since in our enumeration the length of cycles increases.

6 Conclusion

The successor machine clearly helps the design of enumerating rather complex structures

such as IC of monadic �rst-order interpretations. This structure is however simple enough

that isomorphism testing is still polynomial. This is no longer the case of non-monadic

signatures (ruling out the equality), for which it is clearly isomorphism complete. It is

doubtful whether a polynomial successor function can then exist, and it may be necessary

for e�ciency requirements to allow for some redundancy in the search.

References

[1] Nicolas Peltier. A new method for automated �nite model building exploiting failures

and symmetries. Journal of Logic and Computation, To appear.

[2] Jian Zhang and Hantao Zhang. Sem: a system for enumerating models. In C. S.

Mellish, editor, Proceedings of IJCAI'95, volume 1, pages 298{303, Montr�eal, august

20-25 1995. Morgan Kaufmann.

33


