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Abstract

Su�cient conditions for an 9

�

, 89

�

, or 889

�

prenex L

+

-sentence to be translatable

into the variable-free formalism L

�

will be singled out in what follows. An e�cient

test based on such conditions will also be described. Through minor modi�cations of

this testing algorithm, one can obtain the translation when the su�cient conditions

are met.

1 Introduction

L

�

is a ground equational formalism that can compete with �rst-order predicate logic

as a support for number theories as well as for full-blown theories of sets (cf. [TG87]).

Super�cially, it resembles the relational languages grown inside the database and knowl-

edge base �eld more than the speci�cation languages inspired by traditional logic. In

analogy with �rst-order logic, fragments of which have been endowed with an executable

semantics, L

�

has been proposed as a support for programming languages (cf. [BL92] and

[FL94]). From the standpoint of automated deduction, L

�

has the appeal of being devoid

of quanti�ers|and even of variables: accordingly, performing deductions in L

�

is akin to

the process of carrying out algebraic simpli�cations, without even the burden of having to

instantiate variables.

In spite of the power it demonstrates when the aim is to formalize |and to reason

inside| a strong theory (i.e. a theory where the operation of pairing and conjugated

projections are de�nable), L

�

shows limitations when compared with plain predicate cal-

culus. It is easily seen that any formula of L

�

can be translated into a �rst-order sentence

involving at most three variables; however there are �rst-order sentences that have no

logically equivalent sentence in three variables (the collection of all such sentences is not

even recursive, cf. [TG87]), and moreover there are cases when a valid sentence in three

variables cannot be proved unless by calling a fourth variable into play.

�
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The inverse translation of �rst-order sentences in three variables into L

�

, although not

very easy, is possible too, and we own a program that does the job. More generally, our

Prolog program accepts in input |and translates into L

�

| sentences in three variables of

the formalism L

+

that extends both L

�

and a �rst-order language containing equality and

an arbitrary number of binary predicate symbols, being devoid of constants and function

symbols. One can hence express in L

+

, with relative ease, notions such as the ones of

bisimulation, graph isomorphism, transitive 2-closure of a set, and have them translated

automatically into compact L

�

equivalents. However, the limitation of having but three

variables at one's disposal is unbearable after a while. E.g., every instance

:(9x

0

; : : : ; x

N+1

)(x

N+1

= x

0

^

V

N

i=0

x

i

2 x

i+1

)

of the acyclicity of membership can be stated with three variables (and indeed it can be

expressed by the sentence (2 � 2 : : : � 2

| {z }

n times

) \ �=� of L

�

), but why should one reformulate

it before the translation? This paper addresses the problem of directly moving from L

+

to L

�

, when this is possible, without the preliminary obligation of moving quanti�ers

inwards (either manually or automatically) to comply with the three-variable restriction.

2 The languages L

�

and L

+

The language L

�

. Syntax and semantics

Predicate expressions in the language L

�

can be built from denumerably many binary

predicate letters (p

1

; p

2

; : : :), an identity map symbol (�, occasionally written =), two bi-

nary operators (\ and �), two unary operators ( and

�1

), and two constants (� and 1l).

One can relate predicate expressions through the equality symbol (=) to produce atomic

formulae. These, in turn, can be combined into compounds by means of propositional con-

nectives. An example of a well-formed L

�

-formula is: (p

1

� p

�1

5

�1l)\p

3

=(p

3

� p

1

)

�1

_p

1

\

p

5

6=�.

An interpretation of the language L

�

is given by a pair = = [U ; (R

1

;R

2

; : : :)], where

= is a non-empty domain and each R

i

is a binary relation over U , i.e., R

i

� U � U .

For any interpretation = = [U ; (R

1

;R

2

; : : :)], we convene that:

� �

=

is the identity relation on U ;

� p

=

i

is the binary relation R

i

;

� given two predicate expressions A and B,

(A \B )

=

=

Def

f [x; y] j [x; y] in A

=

\B

=

g ;

A

=

=

Def

f [x; y] j x; y in U and [x; y] not in A

=

g ;

(A � B )

=

=

Def

f [x; y] j for some z in U , [x; z] in A

=

and [z; y] in B

=

g ;

(A

�1

)

=

=

Def

f [x; y] j [y; x] in A

=

g :

An equality A=B is true in = if and only if A

=

and B

=

denote the same binary relation

over U . Finally, connectives are interpreted in the usual way.

The language L

+

L

+

is a version of �rst-order language, with the above p

i

s as predicate symbols and with

atomic formulae of the following two types:

� xAy, where x and y are individual variables and A is an L

�

-predicate expression;
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� A=B, where A and B are L

�

-predicate expressions.

An example of an L

+

-formula is (8w; z)(w(` � p

�1

) \ �z $ w(r�s

�1

�1l)\ �z )^p�p

�1

=� :

The semantics of L

+

is a usual �rst-order logic semantics, where predicate expressions

and predicate equalities are interpreted as above.

Su�cient conditions for an 9

�

, 89

�

, or 889

�

prenex L

+

-sentence to be translatable into

the variable-free formalism L

�

will be singled out in what follows. An e�cient test based

on such conditions will also be described. Through minor modi�cations of this testing

algorithm, one can obtain the translation when the su�cient conditions are met.

3 Two translation problems

The present paper addresses the following two problems:

(1) Given a sentence � of L

+

of the form

�$

Def

9x

0

9x

1

� � � 9x

N

9x

N+1

 

H

^

h=1

x

i

h

R

h

x

j

h

!

;

where each R

h

is a predicate expression of L

�

, establish whether � can be translated

into L

�

, in the sense that for a suitable predicate Q of L

�

the following holds:

j=

+

�$Q 6= � :

(2) Given a formula '[x

0

; x

N+1

] of L

+

of the form

'[x

0

; x

N+1

]$

Def

9x

1

� � � 9x

N

 

H

^

h=1

x

i

h

R

h

x

j

h

!

;

where, as above, R

h

is a predicate expression of L

�

, establish whether ' is de�nable

in L

�

, in the sense that for a suitable predicate Q of L

�

the following holds:

j=

+

8x

0

8x

N+1

('[x

0

; x

N+1

]$x

0

Qx

N+1

) :

Notice that problem (2) is more general than problem (1), since

� any predicate expression Q which solves problem (2), solves the corresponding problem

(1) too;

� one can translate any instance of problem (1) into an instance of problem (2) by adding

the two conjuncts x

�1

1lx

0

and x

N+1

1lx

N+2

.

Moreover, w.l.o.g., in the formulation of problems (1) and (2) we can always require i

h

� j

h

to hold for all h 2 f1; : : : ;Hg.

Even though apparently narrow, problem (2) deserves good treatment; indeed, an

algorithm to solve it is an essential ingredient of clever techniques for translating L

+

-

sentences into L

�

.
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4 Graph rendering of the problems

Let '[x

0

; x

N+1

] be a formula of L

+

having the said form

'[x

0

; x

N+1

]$

Def

9x

1

� � � 9x

N

 

H

^

h=1

x

i

h

R

h

x

j

h

!

;

where R

h

is a predicate of L

�

and i

h

� j

h

for all h 2 f1; : : : ;Hg. We begin by associating

with '[x

0

; x

N+1

] the labelled graph G

0

'

= (V

0

; E

0

), where V

0

= f�

0

; �

1

; : : : ; �

N

; �

N+1

g and

where a labelled directed arc �

i

h

R

h

�! �

j

h

is made to correspond in E

0

to each one of the

atoms x

i

h

R

h

x

j

h

of '.

Notice that G

0

'

is a dag (i.e., acyclic), save for possible self-loops. However, each self-

loop � can be eliminated from G

0

'

as follows. Introduce in V

0

a new node �

�

and replace �

by the new arc �

R\�

�! �

�

, where � is �

R

�! �; then replace every arc �

R

0

�! �

0

with �

0

6= �

�

in G

0

'

by the new arc �

�

R

0

�! �

0

.

A graph G

'

will result at the end, acyclic by what we have managed to do, and to be

called the graph rendering of '. We call the nodes �

0

and �

N+1

preferred source and sink

of G

'

, respectively.

5 Solution method for the second problem

3-saturated and 3-embeddable directed acyclic graphs

DEFINITION 5.1 A 3-saturated graph is a triple [G; s; t], where G is a dag, s is a

source (i.e, a node with no incoming edge) of G, t is a sink (i.e., a node with no outgoing

edge) of G, and either

� G consists of the single arc s �! t, or

� G can be obtained from two 3-saturated graphs [G

0

; s

0

; t

0

] and [G

00

; s

00

; t

00

], having disjoint

sets of nodes, in either of the following two ways:

by fusing t

0

with s

00

and by putting s =

Def

s

0

and t =

Def

t

00

;

by fusing s

0

with s

00

and t

0

with t

00

, and by putting s =

Def

fs

0

; s

00

g and t =

Def

ft

0

; t

00

g.

1

A dag G is said to be 3-embeddable w.r.t. a source s and to a sink t if it can be

extended into a 3-saturated graph [G

0

; s; t] based on the same nodes. 2

An algorithm to detect 3-embeddability

ALGORITHM 3-EMB

Input: A dag G with designated source s and sink t.

Output: Answer to the 3-embeddability problem for G.

� While there is a node v in G, with v 6= s; t, which is not isolated and

such that it has at most one incoming edge and at most one outgoing

edge, remove from G all edges incident to v; moreover, if v has exactly

one incoming edge, u �! v, and exactly one outgoing edge, v �! w,

then add to G the edge u �! w, if not already present.

� If G contains at most the single edge s �! t then return \G is 3-

embeddable" otherwise return \G is not 3-embeddable".

1

Here fs

0

; s

00

g and ft

0

; t

00

g stand for the nodes obtained by fusing s

0

with s

00

, and t

0

with t

00

, respectively.
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REMARK 5.2 It is not hard to see that algorithm 3-EMB admits an O(n

3

) implemen-

tation, where n is the number of nodes in the input graph. 2

Translating existential formulae from L

+

to L

�

As usual, let '[x

0

; x

N+1

] be an instance of problem (2), and let G

'

be its graph rendering,

with preferred source s and sink t. We have the following result.

LEMMA 5.3 If G

'

is 3-embeddable, then ' can be translated in the L

�

-formalism.

To perform the translation of a given formula ' in the L

�

-formalism, algorithm 3-EMB

can be adapted in such a way that while it recognizes the 3-embeddability of the graph

rendering G

'

of ', it also constructs a 3-saturated graph G

0

'

which extends G

'

(called a

3-completion of G

'

) by adding edges labelled 1l.

The resulting saturated graph G

0

'

can then be processed by the following procedure

to produce the seeked for translation.

ALGORITHM L

�

-TRANSLATOR

Input: A tranlatable instance '[x

0

; x

N+1

] of problem (2).

Output: A translation of (8x

0

; x

N+1

)' in the L

�

-formalism.

� Let G

'

be the graph rendering of ', with preferred source and sink s

and t, and let G

0

'

be the 3-completion of G

'

.

� While there is a node v in G

0

'

, with v 6= s; t, having exactly one incoming

edge, u

A

�! v, and exactly one outgoing edge, v

B

�! w, remove u

A

�! v,

v

B

�! w, and v from G

0

'

; if an edge u

C

�! w is present in G

0

'

then

substitute its label C with C \ (A �B), otherwise add to G

0

'

a new edge

u

A�B

�! w, with label A �B.

� If G

0

'

has been reduced to the single edge s

R

�! t then return \x

0

Rx

N+1

is a L

�

-translation of '[x

0

; x

N+1

]".

6 Conclusions and envisaged extensions

Two problems that naturally generalize problem (2) of Sec.3 are:

(3) Given a formula '[x

0

; x

N+1

] of L

+

of the form '[x

0

; x

N+1

]$

Def

9x

1

� � � 9x

N

�

V

H

h=1

x

i

h

R

h

x

j

h

�

,

where, as before, each R

h

is a predicate expression of L

�

, and assuming that a sub-

set F

1

; : : : ; F

K

of the set of R

h

s has been declared to consist of single-valued maps,

establish whether ' is de�nable in L

�

, in the sense that for a suitable predicate Q

of L

�

the following holds:

V

K

k=1

( F

�1

k

� F

k

� � ) j=

+

8x

0

8x

N+1

('[x

0

; x

N+1

]$x

0

Qx

N+1

) :

(4) Given a formula '[x

N+1

; : : : ; x

N+M

]$

Def

9x

1

� � � 9x

N

�

V

H

h=1

x

i

h

R

h

x

j

h

�

, withM > 2,

involving predicate constructs and quanti�ers, establish whether ' is de�nable in

purely relational terms.
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It seems worth of investigation, concerning in particular problem (3), how additional

information can suggest local transformations to the graph rendering of a given ', that

may enforce 3-embeddability. An illustration of the alluded kind of transformations will

be seen in the last example in the appendix. Problem (4) requires, at least when M > 3,

a generalization of our techniques to higher dimensions.

Well performing techniques for giving algebraic form to logical sentences are a presup-

position for any fair comparison between, and fruitful combination of, reasoning methods

directly rooted on predicate calculus and methods originating from algebra. Although less

familiar to the majority of computer scientists than other formalisms successfully designed

for database systems and for taxonomic reasoning, L

�

is the archetype of a rich variety

of relational languages. This makes us con�dent that the translation techniques we are

designing can be exported from the still somewhat esoteric context we have been focusing

on, and �nd real applications.

To what extent one could take advantage of existing equational theorem-proving tech-

niques to support a sophisticated translation from logic to algebra is at present unclear

to the authors. At any rate, we count very much on the aid of such techniques for the

proof-generation phase that should follow the translation phase.
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Appendix: Examples drawn from elementary arithmetic

Conjugated projections ` and r

The following table contains a characterization in the formalisms L

+

and L

�

of two conjugated

projections, ` ed r, which are supposed to invert a pairing function over the natural numbers.

` is a function (8x; y; z)(`(x; y) ^ `(x; z)!y = z) (` � �) \ `=�

r is a function (r � �) \ r=�

` is total (8x; u) 9 y (`(x; y) ^ y1lu) ` � 1l=1l

r is total r � 1l=1l

` and r invert (8x; y)9 z (`(z; x) ^ r(z; y)) `

�1

� r=1l

a pairing function :(9 z; w) (9x; y)(`(z; x) ^ `(w; x) ^ r(z; y) ^ r(w; y)) (` � `

�1

) \ (r � r

�1

)=�

Successor function s

s is an injective (s � �) \ s=�

total function s � 1l=1l

(8x; y; z)(s

�1

(x; y) ^ s

�1

(x; z)!y = z) (s

�1

� �) \ s

�1

=�

All numbers but one are successor of some number

Here is a chain of transformations from L

+

to L

�

.

- 9 z 8 y(z 6= y$9x s(x; y))

- (9 z; u) :9 y :(z 6= y$9x (s(x; y) ^ x1lu))

- (9 z; u) :9 y ((z 6= y ^ ys

�1

� 1lu)_(z = y ^ ys

�1

� 1lu))

- (9 z; u) :(9 y (z 6= y ^ ys

�1

� 1lu)_9 y (z = y ^ ys

�1

� 1lu))

- (9 z; u) (:9 y (z 6= y ^ ys

�1

� 1lu) ^ :9 y (z = y ^ ys

�1

� 1lu))

- (9 z; u) (z� � s

�1

� 1lu ^ z� � s

�1

� 1lu))

- � � s

�1

� 1l \ � � s

�1

� 1l 6=�

s is acyclic

For all N ,

- :(9x

0

; x

1

; : : : ; x

N

; x

N+1

) (s(x

0

; x

1

) ^ s(x

1

; s

2

) ^ � � � ^ s(x

N

; x

N+1

) ^ x

0

= x

N+1

)

- (s �s � � � � � s

| {z }

N times

) \ �=�

Properties of the sum function p

v + 0 = v

- 8w(9 v (`(w; v) ^ p(w; v))$:(9x; u)(r(w; u) ^ s(x; u)));

- (8w; z)(:9 v (`(w; v) ^ p(z; v) ^ w = z)$(9x; u)(r(w; u) ^ s(x; u) ^ w = z));

- (` � p

�1

) \ �=(r � s

�1

� 1l) \ �
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x+ s(y) = s(x+ y)

-

(8w; t)( (9 v; y)( r(w; v) ^ s(y; v) ^ p(w; t))$

(9 v; y; x; u; z)(r(w; v) ^ s(y; v) ^ `(w; x)^

`(u; x) ^ r(u; y) ^ p(u; z) ^ s(z; t)) ) ;

- (r � s

�1

� 1l) \ p=((r � s

�1

� r

�1

) \ (` � `

�1

)) � p � s.

Properties of the product function m

v � 0 = 0

- (8w; z)(:9 v s(v; z)!(m(w; z)$`(w; z)_r(w; z)));

- 1l � s � m4 (` [ r)

- m4 (` [ r) � 1l � s

x � s(y) = x � y + x

(8w; t)( (9 v; y)( r(w; v) ^ s(y; v) ^m(w; t))$

(9 v; y; x; w

0

; t

0

; w

00

)(r(w; v) ^ s(y; v) ^ `(w; x)^

r(w

0

; y) ^ `(w

0

; x) ^m(w

0

; t

0

)^

`(w

00

; t

0

) ^ r(w

00

; x) ^ p(w

00

; t)) ) ;

A graph rendering of the right-hand side of the above equivalence is the following:

w

x

tw’’

plmr

v w’y

s

t’

r

l l r

-1 -1

-1
-1

-1

It can easily be checked that the above graph is not 3-embeddable. Since ` has been charac-

terized as a function, node x can be split into two nodes, by introducing a new node x

0

, and the

graph becomes

w tw’’

lmr

v w’y

s

t’

r

x

l l

l r

x’

-1

-1 -1

-1

-1 p

The above graph is 3-embeddable. Thus we obtain the following translation:

(r � s

�1

� 1l) \m=((((r � s

�1

� r

�1

) \ (` � `

�1

)) �m � `

�1

) \ (` � r

�1

)) � p :
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