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I. INTRODUCTION.

Due to their high level of reliability, formal methods are gaining acceptance in academia as
well as in industry [Ha,90], [BH,95], [Gu,92]. In particular, the use of first-order theorem
provers based on mechanisms such as resolution, rewriting, or induction is very promising.
Many research teams are conducting work in this field, using provers like OTTER [Mc,91],
LP [GG,91], RRL [KZ,87], Nqthm [BM,88],… In the framework of the PREVAIL system
[BP,92], [BB,96], which proposes various proof tools for validating hardware descriptions
written in VHDL [Ie,88], we focus on the application of the Boyer-Moore theorem prover,
Nqthm, to the verification of the equivalence (or implication) between a circuit
implementation and its specification, i.e. its expected behaviour. Nqthm is essentially based
on the principles of recursion and induction. Thus, it is well-adapted to categories of
circuits that can naturally be modelled recursively, in particular replicated parameterized
architectures, where recursion expresses the regularity of the structure.

Here we consider one of the most widespread distributed architectures, the four neighbor
torus of elementary processors [Le,91]. Due to their replicated nature, such hardware
systems can easily be represented in VHDL by means of iterative or recursive "generic"
descriptions, i.e. their size (relatively to the number of elementary processors) can be
associated with a "generic" parameter N. This feature is particularly well-suited to the
powerful induction mechanism of Nqthm. We propose two different approaches to formally
reason about these devices using this prover. The first one makes use of recursive functions
that faithfully translate the structural replication, and which are close to the usual VHDL
descriptions. The second one is based on the notion of Cayley graphs [BM,76], [He,97], a
representation of mathematical groups, in particular permutation groups. Here we consider
the fact that a torus is the representation of a permutation group with four generators. In the
former case, we propose a specific modelling technique and an associated proof metho-
dology which extend previous results [Pi,95] to toruses. In the latter, we give a Nqthm
definition of toruses as Cayley graphs by means of their generators, and we build a library
of formally verified fundamental properties of these graphs. Proving the correctness of
instances of toruses makes use of these properties. The advantages of these two approaches
are respectively the simplicity of the specification, and the efficiency of the proof.

II. NQTHM AND ITS APPLICATION TO PARAMETERIZED ARCHITECTURES.

The Boyer-Moore logic is a quantifier-free first order logic with equality [BM,88]. The
syntax of Nqthm is a Lisp-like syntax. Its three main principles are :

• the "shell" principle. Inductive abstract data types - called "shells" - can be built by
means of a bottom object, a constructor, and one or more accessors. A boolean
function, called a recognizer, recognizes if an object belongs to the shell.

• the definition principle. Prior to accepting a recursive definition, the system verifies
that there exists a measure which decreases according to a "well-founded" relation.

• the induction principle. It allows to prove inductive theorems over recursive
functions. Induction variables are automatically detected and induction schemes are
automatically generated accordingly.

Some ideas about the verification of parameterized hardware with the Boyer-Moore
theorem prover were already proposed in [GW,85]. More recently, the application of this
prover to parameterized architectures described in Hilarics was studied at IMEC [VV,92].
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This methodology applies to combinational as well as sequential devices with one-way
propagated carries. The same problem has also been investigated with other provers, for
instance in [KS,96], RRL is used to specify and reason over generic hardware components
(the example of a carry save adder, used in the Wallace tree multiplier, is developed).

III. FOUR NEIGHBOR TORUSES.

Figure 1 depicts a NxN four neighbor torus. This interconnection network is an array of
four neighbor processors where the output data on the right hand side are input to the first
column P0,0, …, PN-1,0, the output data on the left hand side are input to the last column
P0,N-1, …, PN-1,N-1, the output data on the bottom are input to the first row P0,0, …, P0,N-1,
and the output data at the top are input to the last row PN-1,0, …, PN-1,N-1. Usually, each
processor implements an elementary boolean or arithmetic function and can store data.
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Figure 1. NxN four neighbor torus

entity row_max is port(ck:in bit; load:in bit;

                         V:in nat_vector(0 to N-1); C1,C2:in natural;

                         A,C:in nat_vector(0 to N-1); R:out nat_vector(0 to N-1));

end row_max;

architecture struct of row_max is

component cell_max port(ck:in bit; load:in bit;

                         m_in:in natural; a,b,l,r:in natural; m_out:out natural);

end component;

signal Carry1, Carry2, S:nat_vector(0 to N-1);

begin

   cellblock: block

   for all : cell_max use entity work.cell_max(behav);

   begin

     Row: for I in 0 to N-2 generate      -- regular series of cells

        R1:cell_max port map(ck,load,V(I),A(I),C(I),Carry2(I),Carry1(I),S(I));

        Carry2(I+1) <= S(I);     -- data propagation

        Carry1(I) <= S(I+1); R(I) <= S(I);

     end generate;

     R2:cell_max port map(ck,load,V(N-1),A(N-1),C(N-1),    -- last cell

                          Carry2(N-1),Carry1(N-1),S(N-1));

   end block;

   Carry2(0) <= C2;  R(N-1) <= S(N-1);  Carry1(N-1) <= C1;  -- initializations

end struct;

Figure 2. The basic row in VHDL

Our illustrative example [Bo,84] is a NxN torus where each processor stores an integer value
in its internal register. Its expected behaviour is the following : after a constant number of
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steps, which is equal to the "diameter" of the array, i.e. N (the maximum "distance" between
any two nodes, where the "distance" is the number of edges in the shortest path joining the
nodes), the maximum of the array is transmitted to every processor. At each step, every
processor compares its own value with the values of its four neighbors and updates its
register with the maximum of these five values.  We give below one of the main VHDL
descriptions for this system. A VHDL description is composed of an entity specification,
which describes the interface of the system, and one or several associated architectures that
give particular views of the system structure or behaviour. Usually, an architecture contains
a set of concurrent instructions which handle signals. Hierarchical interconnections of
components can be described, using the "for...use" and "port map" constructs.

We give a structural view of the basic row of this circuit with the entity row_max and its
architecture struct (Figure 2). The parameters A and C are two vectors of natural numbers
(the one above the row and the one below it), C1 and C2 are two natural numbers (resp. the
right and left input data of Pi,N-1 and Pi,0), and the vector V is used to initialize the registers
each time a new computation starts. The structural description shows that each row consists
of N instances of cell_max (N-1 in the "for I in 0 to N-2 generate..." instruction
plus the last instance) and it clearly expresses data propagation between the processors via
the signals Carry1 and Carry2. Similarly, we describe the whole array as the interconnec-
tion of N identical rows with data propagation between them.

IV. OUR BOYER-MOORE ORIENTED APPROACHES.

IV.1 First approach : replication represented by recursive functions.

In this approach, we use two kinds of functions : a recursive function associated with the
row, which expresses the regular interconnection of processors, and a recursive function
associated with the array, which expresses the regular interconnection of rows. Vectors and
arrays of natural numbers are modelled using specific "shells". The general patterns for
these functions are given in [Pi,97]. For instance, the instanciation of our pattern for the
description of Figure 2 gives :

(defn Row (P A C Carry1 Carry2)

   (if (and (natvp P) (natvp A) (natvp C)

            (equal (nsize A) (nsize P)) (equal (nsize C) (nsize P)))

       (if (equal P (nbtm))

           (nbtm)  ; bottom element of the shell of vectors of natural numbers

           (if (equal (nvec P) (nbtm))

               (natv (Cell_max (nat A) (nat C) Carry2 Carry1 (nat P)) (nbtm))

               (natv (Cell_max (nat A) (nat C) Carry2 (nat (nvec P)) (nat P))

                     (Row (nvec P) (nvec A) (nvec C) Carry1 (nat P)))))

       (nbtm)))

where natv is the constructor of the "shell" of vectors of natural numbers, nat is the
accessor that extracts the first element of the vector, and nvec returns the rest of the vector.
The function nsize returns the size of a vector of natural numbers, Cell_max gives the
behavior of the elementary processor, and P represents the previous value of the row.

Because of the lack of place, we briefly recall the proof task, which considers two sub-
problems : the validation of the behaviour of the basic row, and the verification of the
correctness of the whole system. A usual way of designing or validating this kind of arrays
is based on the notion of invariant (see for instance [CM,86],[GV,93]). The reasoning we
adopt is also very close to this notion, we verify properties that are similar to invariants. The
expected behaviour of this system is that, after at most N iterations (where N is the size of the
array), the maximum element of the initial torus is propagated to every processor (less than
N iterations are required if there are several occurrences of the maximum in the array when
the algorithm starts). In fact, the maximum needs at most N/2 iterations to reach every row,
and once a row contains it, at most N/2 iterations are needed for propagating it to every
processor in the row. Thus, we prove a theorem which states that once the maximum
element entered a row V, the number of its occurrences in V is incremented by 2, at least, at
each computation step (except in some special cases). Similarly, we have to verify a second
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lemma which states that the number of rows containing the maximum is incremented by 2,
at least, at each iteration (except in some special cases). Finally, it is clear that the maximum
element will be propagated to every processor after at most N/2 + N/2, i.e. N iterations.

IV.2 Second approach : Cayley graphs.

Interconnection networks can be modelled by finite graphs. The vertices represent the nodes
and the edges are associated with communication lines. Such a modelling is commonly
used when reasoning about problems like the degree/diameter problem, the development of
communication algorithms (broadcasting, gossiping,…), fault tolerance,… Here, one of our
aims is the evaluation of its usefulness in the framework of formal verification.

Let G and S be a group and a subset of this group, the Cayley digraph of G and S is such
that its vertices are the elements of G and its arcs are all ordered pairs (g, g⊗s) where g ∈ G,
s ∈ S and ⊗ is the law of the group. If S is a generating set of G then the Cayley digraph is
strongly connected. If S is unit free and closed under inverses then the digraph is a simple
graph. Cayley graphs have the property of vertex symmetry [AK,89], hence this model is
well-suited to the representation of many symmetric interconnection networks. The NxN
torus of Figure 1 is the cartesian product of two "cycles" of length N, a cycle is a connected
graph with N vertices and degree 2. If we denote (x1, x2, … xN) the permutation σ such that
σ(1)=x1, σ(2)=x2, … σ(N)=xN, then the generators of such a cycle are g1=(N,1,2,…,N-1)
and g2=(2,3,…,N,1). Similarly, the generators of the NxN torus are g1=(N,1,2,…,N-1,
N+1,…2N), g2=(2,3,…,N,1,N+1,…2N), g3=(1,2,…,N,2N,N+1,…2N-1) and g4=(1,2,…,N,N+2,
…2N,N+1). Intuitively, the generators g1 and g2 correspond to horizontal moves along the
edges, and g3 and g4 correspond to vertical moves. We denote g1(i,n), resp. g2(i,n), the
image of i by the generator g1, resp. g2, of the cycle of length n, and g1prime(i,n), resp.
g2prime(i,n), g3prime(i,n), g4prime(i,n), the image of i by the generator g1, resp.
g2, g3,g4, of the nxn torus. We define these functions in Nqthm as follows :

(defn g1 (i n) (defn g2 (i n)

  (if (and (not (zerop n))   (if (and (not (zerop n))

           (not (zerop i)) (leq i n))            (not (zerop i)) (leq i n))

      (add1 (remainder       (add1 (remainder i n))

              (plus (sub1 i) (sub1 n)) n))   0))

      0))

(defn g1prime (i n)   ; similar definition for g2prime, with g2 instead of g1

  (if (and (not (zerop n)) (not (equal n 1)) (not (zerop i)) (leq i (plus n n)))

      (if (leq i n) (g1 i n) i)

      0))

(defn g3prime (i n)   ; similar definition for g4prime, with g2 instead of g1

  (if (and (not (zerop n)) (not (equal n 1)) (not (zerop i)) (leq i (plus n n)))

      (if (leq i n) i (plus (g1 (difference i n) n) n))

      0))

Using these definitions, we verify a set of simple but fundamental properties about the cycle
and the torus. Among the torus properties, we can cite :

• ∀ p, g1
p = g1

p mod n, and similarly for g2, g3 and g4

• ∀ p,q ∈ [0,n-1], p≠q, g1
p ≠ g1

q, and similarly for g2, g3 and g4

• ∀ p ∈ [0,n-1], g1
p = g2

n-p, and g2
p = g1

n-p, g3
p = g4

n-p, and g4
p = g3

n-p

• g1g3 = g3g1, and g2g4 = g4g2

• the diameter of the nxn torus is equal to 2*[n/2]

Then, the verification of the correctness of our example is straightforward since we have
proven that the diameter of the torus is equal to 2*[n/2], and we know that the number of
iterations needed to broadcast a value in such an interconnection network is at most equal
to its diameter. It remains to verify that the value which is broadcasted in the torus is
actually the maximum. To that goal, we prove that the value propagated by a processor to
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each of its neighbors is the maximum of the five values that it considered during the
previous iteration. Thus, a value which is not the maximum can no longer be propagated.

V. CONCLUSION.

We have proposed two different approaches to the application of a first-order theorem
prover, Nqthm, to the formal verification of a particular kind of distributed hardware
system. Both of them take into account the replicated nature of the architecture, and they
present different advantages. The Nqthm encoding for the first one is close to the VHDL
descriptions and can easily be obtained from them, the proof strategy for the second one
can be determined so that it takes advantage of pre-proven fundamental properties.

An important aspect is the link between VHDL and Nqthm. As far as our first approach is
concerned, we have defined a translation method under the assumption that some "design
for verifiability" rules are respected. A recommended modelling style guarantees that
iterative VHDL descriptions can be mapped to our recursive patterns. With respect to the
Cayley graphs approach, we have not yet considered this aspect. Our example has
demonstrated that the iterative VHDL descriptions are useless in that case, only the
description of the elementary processor is required. We can reasonably imagine an
interactive user interface which proposes to the designer a choice of typical interconnection
networks (torus, butterfly, hypercube,…) associated with pre-proven Nqthm libraries, so that
the user only has to select one of them and to give the description of the basic processor,
and the system could semi-automatically generate the Nqthm events.
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