
First Order Logic in Practice

John Harrison

University of Cambridge Computer Laboratory

New Museums Site, Pembroke Street

Cambridge CB2 3QG, England

jrh@cl.cam.ac.uk

http://www.cl.cam.ac.uk/users/jrh

Abstract

There is a trend away from monolithic automated theorem provers towards using

automation as a tool in support of interactive proof. We believe this is a fruitful

drawing together of threads in automated reasoning. But it raises a number of issues

that are often neglected in the classical �rst order theorem proving literature such as

the following. Is �rst order automation actually useful, and if so, why? How can it

be used for richer logics? What are the characteristic examples that require solution

in practice? How do the traditional algorithms perform on these `practical' examples

| are they de�cient or are they already too powerful? We discuss these and similar

questions in the light of our own recent experience in this area using HOL [3].

1 Why do we need �rst order automation?

A taxonomy of computer theorem proving, after perhaps separating `AI' and `logic' ap-

proaches, would divide most contemporary systems into automated and interactive provers.

Automatic provers (e.g. Otter, SETHEO, TPS) are typically applied to challenging but

transparently stated problems in mathematics, and they can at times achieve striking suc-

cess, as with McCune's recent solution of the `Robbins conjecture' using EQP. Interactive

provers (e.g. HOL, Isabelle, NQTHM/ACL2 and PVS) are normally used to build up,

under human guidance, a body of formalized mathematics or a large system veri�cation.

1

Now, although interactive provers may require manual guidance, it's desirable to pro-

vide quite high levels of automation so that the user avoids the tedious �lling in of trivial

details. Indeed, the most e�ective recent systems such as PVS do provide quite powerful

automation for special theories felt to be particularly important in practice, e.g. linear

arithmetic and propositional tautology checking. But what about the automation of pure,

typically �rst order, logic? There have been attempts since at least SAM [4] to harness au-

tomation of pure logic in interactive systems. Yet a common view today is that automation

of theories like linear arithmetic is far more signi�cant in practice.

There is some justi�cation for this view. The logical structure of a typical veri�cation

or mathematics proof is su�ciently simple that users are content to create such a proof

manually, whereas proving facts of (say) linear arithmetic is much less interesting, and

1

We classify systems like NQTHM as interactive provers here because although they need no user

selection of proof methods, they do require a careful manual grading of the theorems to be proved in their

typical applications.

86



more time-consuming. For example, a manual proof that jx � yj � jjxj � jyjj is likely to

consist of a series of case splits followed by tedious chaining together of inequalities.

However, we believe that �rst order automation is useful in practice, even in veri�cation

applications [8]. Indeed, we have relied quite extensively on �rst order automation to

�nish o� otherwise tedious subgoals in recent work, e.g. in oating point veri�cation

[5] and classic metatheorems for embedded logics (as yet unpublished). It's especially

handy when after a large case split there are many boring subgoals | a few would be

acceptable to prove by hand, but a dozen or a hundred much less so. Admittedly, the

veri�cation example would have been all right without �rst order automation, whereas it

would have been much more tedious without linear arithmetic. Nevertheless, even if �rst

order automation isn't the most important tool, it is still useful.

This is not a novel idea: users of many systems such as EVES and Isabelle tend to

use �rst order automation quite extensively. But we believe there is a deeper reason why

the automation of pure logic is important, indicated by the Mizar system [10]. This is an

interactive theorem prover that has been used for the formalization of an unparallelled

amount of pure mathematics.

2

It has several interesting features, but we want to focus on

its use of �rst order automation to provide a declarative style of proof.

We have said that the logical structures of typical theorems are reasonably simple

and not uninteresting. However sometimes the precise choreographing of logical steps is

quite tedious when one theorem `obviously' follows from a given set of premisses. Mizar

allows the user merely to state the premisses, and �nds the proof itself, using an optimized

special case of tableaux as well as simple techniques for equality reasoning. This opens

up the possibility of stating proofs in a much less prescriptive and more declarative style,

which arguably leads to a number of advantages in readability, maintainability and indeed

writeability | see [6] for a more detailed discussion of these points. The same advantages

can be had in many other interactive systems, given adequate logical automation. For

example, Syme [9] has recently used a prover with a declarative input language to prove

type soundness for a part of Java.

2 First order automation for richer logics

It may be objected that, while Mizar is more or less based on a �rst order theory (Tarski-

Grothendieck set theory), many of the leading interactive systems like HOL and PVS

are based on a higher-order logic. So it might seem that special higher-order proof-

automation methods are essential. Such methods exist, and are used for example in TPS

[1]. Nevertheless, �rst order automation is at present better understood and easy to make

e�cient, and we believe it is satisfactory for a signi�cant fragment of HOL proofs. We'll

now try to explain why.

In HOL, although higher order features are constantly used, many of the proofs are

`essentially �rst order'. We reduce higher order to �rst order logic in a well-known me-

chanical way: introduce a single binary function symbol a to represent `application', and

translate HOL's f x into a(f; x), etc.

3

Then it is often the case (empirically) that when

a theorem is provable in higher order logic, the corresponding �rst order assertion is also

provable. Proofs that cannot be done in the �rst order reduction are those that require

the instantiation of higher order variables, i.e. the invention of lambda-abstractions. For

2

See the Web page http://web.cs.ualberta.ca:80/~piotr/Mizar/.

3

Actually we optimize this in various ways when we do it in HOL.

87



example, when trying to prove 8n: n+ 0 = n by induction, the induction theorem needs

to be specialized to the relation �n: n+ 0 = n, or equivalently, to the set fn j n+ 0 = ng.

Note however that if the appropriate term is already bound to some function, then just

throwing in the de�nition is enough; the lambda-term is then expressible in a �rst order

way. However, such a reduction of HOL to FOL allows a number of interesting questions.

� How much e�ort should we expend in eliminating higher order features? For exam-

ple, although we reduce beta-redexes in the input, we don't make a more elaborate

translation of P [�x: t[x]] to 8f: (8x: f(x) = t[x])) P [f ]. Should we?

� HOL features instantiable polymorphic types. At present our translation simply

throws away all type information, and regards di�erently-typed instances of the

same constant as di�erent when translating to FOL. To further cut down on the

(already rare) cases where this makes the input assertion unprovable, we include

some heuristics in a preprocessor to instantiate certain hypotheses with relevant-

looking types.

4

An alternative, recently used by Paulson in Isabelle, is to regard all

constants with the same name as identical, and backtrack in the rare cases where

this causes the eventual HOL proof to fail due to ill-typed terms. Finally, of course,

one can translate to many-sorted FOL and use the types during proof search.

� Typically, the eventual �rst order provers use negation normal form or even (for

resolution and model elimination) clausal form. Shoehorning the initial problem

into these forms can be done in many di�erent ways. In particular, it is often the

case that by splitting bi-implications p � q appropriately (either (p ^:q)_ (:p^ q)

or (p _ q) ^ (:p _ :q) depending on sign) it is often possible to split the problem

into much simpler problems, rather than reduce everything to a single clausal form

directly.

5

For example, `Andrews' Challenge':

((9x: 8y: Px � Py) � ((9x: Qx) � (8y: Qy)))

� ((9x: 8y: Qx � Qy) � ((9x: Px) � (8y: Py)))

can be split into 32 independent subgoals, each of which is fairly easy.

� In practice, �rst order automation seems much less useful without equality handling.

Complete approaches include throwing in all the equality `axioms', including con-

gruence rules for all the relevant function and predicate symbols, and versions of

Brand's transformation. There are also more sophisticated complete techniques as

well as ad hoc variants like doing rewriting at certain places in standard procedures.

3 Which problems arise in practice?

Any selection of problems we make from our own work will su�er from self-selection. For

example, the problems for which we have used �rst order automation are of course those

that our own MESON-based tools could solve acceptably quickly. We haven't kept track of

the problems we wished were solvable in a reasonable time but weren't. Nevertheless, we

claim that, since we have used �rst order automation in a fairly wide range of applications,

we have a sample of problems that would arise quite often in real work.

4

We are not sure whether there is any complete preprocessing method | ours is not complete.

5

It is also possible to use more sophisticated `de�nitional' techniques to avoid blowup in such cases.

88



Typical �rst order test suites, notably the large TPTP library, tend to be quite di�erent

in character. The examples are typically results in quite simple axiomatic systems, e.g.

that a group where 8x:x

2

= 1 is Abelian. Compared with our problems they are sometimes

easier, often much more di�cult, but in any case tend to involve much smaller terms and

very little irrelevant information. (There are exceptions, e.g. a substantial number of the

TPTP problems in the NUM domain are based on a set of about 250 axioms for set theory.)

Moreover, they have already been put into clausal form without exploiting possibilities for

splitting (in cases where the canonical problem statement isn't already in clausal form).

Therefore, we feel that a suite of examples compiled from work such as our own would

be a valuable complement to the TPTP library. It would represent the kinds of problems

that arise when using �rst order automation in a workaday capacity, rather than for

isolated tours de force. The hope would be not so much that a system can solve them, but

that it can solve them quickly enough to form part of a convenient interactive environment.

If the problems seem too easy, it would be possible given certain proof systems (e.g.

Mizar) to make them more di�cult by automatically combining multiple steps into a

single challenge problem.

4 Do the existing methods work?

We've generally found that a version of the MESON procedure (with a naive method for

equality handling based on adding all the equality axioms) is a very useful tool, and in

practice solves most of the problems that we would expect. It can even be too powerful,

in that some results are proved automatically which perhaps deserve some thought from

the user, and a human-style record of the proof.

However on our examples, we cannot always concur with some accepted wisdom. For

example, it is usually held that Brand's transformation is a better way of coping with

equality than our own naive approach. (A re�nement of this method is used by SETHEO.)

However our experiments indicate that while both have their strengths and weaknesses,

our method actually solves more problems in a reasonable time. We conjecture that this

is because in our examples some of the underlying terms, even where they are irrelevant to

the proof, are quite large, and so Brand's transformation leads to an unnecessary explosion

of clauses.

Of course, the ideal would be to combine �rst order automation and ubiquitous forms

of theory reasoning such as linear arithmetic. This has long been a popular line of research

| [2] describes recent work motivated very much by practical problems thrown up during

interactive proof. But in any case, we have found that more-or-less standard �rst order

automation is surprisingly valuable in itself.

5 A broader view

1. When there are well-established methods for handling a class of problems, e.g. �rst

order theorem provers, model checkers, computer algebra systems and linear pro-

gramming tools, it's always worth reecting on the potential for using them as sub-

systems of interactive provers. This is hardly a new idea, but the point deserves

emphasis. The main novelty (or handicap, depending on one's point of view) of

our own approach is that we maintain soundness by creating all proofs using stan-

dard natural deduction steps. Quite often this can be done by having standard

89



o�-the-shelf system record a solution or a proof trace which is then translated into

a natural deduction proof. For example [7] discusses combining HOL with Maple in

this fashion. It is not necessary to keep the entire system small and simple to ensure

soundness.

2. We consider that the `interactive' and `�rst order automation' communities commu-

nicate too little. Interactive provers can provide real applications in which to put

�rst order automation to work, and automation can be the key to some interesting

new approaches to interactive proof such as a declarative proof style. We must admit

that for those interested in automation, solving hard problems is more exciting and

helps to stimulate a competitive spirit. But if we try to create test suites of more

`practical' problems, we can still compare systems in a meaningful way. As well as

the di�erences in the kind of problems that are signi�cant, this may change the very

qualities one looks for in a �rst order prover.

References

[1] P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, and H. Xi. TPS: A

theorem proving system for classical type theory. Journal of Automated Reasoning,

16:321{353, 1996.

[2] N. S. Bj�rner, M. E. Stickel, and T. Uribe. A practical integration of �rst-order

reasoning and decision procedures. In W. McCune, editor, Automated Deduction

| CADE-14, volume 1249 of Lecture Notes in Computer Science, pages 101{115.

Springer-Verlag.

[3] M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem proving envi-

ronment for higher order logic. Cambridge University Press, 1993.

[4] J. R. Guard, F. C. Oglesby, J. H. Bennett, and L. G. Settle. Semi-automated math-

ematics. Journal of the ACM, 16:49{62, 1969.

[5] J. Harrison. Floating point veri�cation in HOL Light: The exponential function.

Technical Report 428, University of Cambridge Computer Laboratory, 1997.

[6] J. Harrison. Proof style. Technical Report 410, University of Cambridge Computer

Laboratory, 1997. To appear in the proceedings of TYPES'96.

[7] J. Harrison and L. Th�ery. A sceptic's approach to combining HOL and Maple. Journal

of Automated Reasoning, To appear.

[8] R. Kumar, T. Kropf, and K. Schneider. Integrating a �rst-order automatic prover in

the HOL environment. In M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley,

editors, Proceedings of the 1991 International Workshop on the HOL theorem proving

system and its Applications, pages 170{176. IEEE Computer Society Press, 1991.

[9] D. Syme. Proving Java type soundness. Technical Report 427, University of Cam-

bridge Computer Laboratory, 1997.

[10] A. Trybulec. The Mizar-QC/6000 logic information language. ALLC Bulletin (Asso-

ciation for Literary and Linguistic Computing), 6:136{140, 1978.

90


