
Using Grammars for Finite Domain Evaluation

Robert Matzinger

�

Technische Universit�at Wien

October 7, 1997

Abstract

In [8] we investigated representing Herbrand models via context-free grammars

and found the representation power of this method to be exactly the �nite models.

Based on these observations we now present a clause set evaluation algorithm that

operates directly on grammars, avoiding the exponential blow-up from the number

of nonterminals in the grammar to the number of elements in the �nite domain of

the corresponding model, ending up with a not-so-obvious evaluation procedure for

arbitrary clause sets over �nite interpretations (speci�ed via grammars).

1 Introduction

Currently there is considerable ongoing work in the �eld of automated model building

(see e.g. [2{5, 10, 11]), a sub�eld of automated theorem proving that attempts to design

algorithms for �nding models of satis�able �rst order logic formulas. Note that a model of

a formula :A is nothing else than a counterexample of A, which may be of enormous help

for �nding the reason why A failed to be valid. Clearly, the ability to represent models

of �rst order logic formulas in a computationally feasible way is a necessary prerequisite

for trying to build them. However, representation mechanisms for particular models of

�rst order logic formulas play an important role in many other �elds too, e.g. semantic

resolution, model checking, etc. That's why we considered it worthwhile to investigate

mechanisms for representing interpretations of �rst order logic formulas symbolically by

their own, aiming to accompany work in the automated model building �eld.

From a theoretical point of view it makes sense to restrict ourselves to Herbrand models

of skolemized formulas (i.e. clause sets), but this is also justi�ed from a practical viewpoint

to utilize the intuitive requirement of understandability, because in Herbrand models

the domain and the interpretation of the function symbols are clear, �xed and intuitive.

Still we know there exists a Herbrand model for any (skolemized) satis�able formula.

To describe a certain Herbrand model over a �xed signature we just have to �nd a

method for specifying potentially in�nite sets of (true) ground atoms, i.e. sets of terms

(or strings, depending on how we want to look at them). This viewpoint reveals the (to

our opinion) most interesting aspect of our approach: We are lead to investigating model

properties in terms of syntactical properties of the corresponding true-ground-atom set.

In [7, 8] we investigated the use of context-free grammars to represent the true ground

atom set of an interpretation

1

in the following sense: Consider a �xed signature �.

�

Institut f�ur Informationssysteme, Abteilung f�ur Wissensbasierte Systeme;

Treitlstr. 3/E184-3, A-1040 Wien/Austria/Europe; phone: +43(1)58801/8196, telefax: +43(1)5817966,

email: matzi@kr.tuwien.ac.at, URL: http://www.kr.tuwien.ac.at/�matzi/

y

This work was supported by the Austrian Science Foundation under FWF grant P11624{MAT.

1

For didactical reasons we consider formulas with only monadic predicate symbols (but function symbols

91

HD

�

denotes the set of terms over this signature (i.e. the Herbrand domain). Let G =

(A

�

;P [N ;�) be a grammar where A

�

is the set of constant symbols plus the function

symbols plus the symbols

0

(

0

,

0

)

0

, and

0

;

0

. P is the set of predicate symbols in the signature

(used as nonterminals in the grammar), N is an appropriate set of additional nonterminal

symbols and � is a set of productions. We omit the notation of a starting symbol with

the grammar, writing it as an index of the language instead, e.g. L

P

denotes the language

derived by G with starting symbol P . We may restrict ourselves to at term grammars

i.e. grammars in which each production is either of the form N �! a with a being a

constant or is of the form N �! f(N

1

; : : : ; N

n

) with f being a function symbol of arity

n and N;N

1

; : : : ; N

n

2 P [N being nonterminals. Note that we do not lose generality,

because any context-free

2

subset of HD

�

can be generated also by a at term grammar,

a fact we proved in [9].

Now we can simply de�ne the Herbrand interpretation �

G

by stating that a ground

atom P (t) shall be interpreted true i� t 2 L

P

. We call any Herbrand interpretation a

context-free interpretation (or context-free model) i� we can de�ne it via a grammar in

the above sense. Clearly at term grammars are just another notation for indeterministic

bottom-up tree automata (see [6]), which (beside other desirable properties) can always be

translated to deterministic ones. This and the fact that regular tree languages are closed

under inversion, intersection and complement enables to show that

Theorem. For any context-free model of a skolemized monadic formula (with arbitrary

function symbols) there is an equivalent �nite model and every �nite model contains a

submodel that is equivalent to a context-free model.

Corollary. For any �nite model of a skolemized formula (with arbitrary function symbols)

the set of true ground atoms is a context-free language. A formula has a �nite model i� it

has a context-free one.

So we can cover exactly the �nite models with this representation mechanism, that

well satis�es the requirements for model representations as raised in [4]: The atom test

(i.e. evaluating P (t) for a ground term t) is nothing else than a syntax check for t with

respect to the term grammar, which can be solved in linear time (w.r.t. the length of the

atom). The equivalence check (i.e. whether or not two grammars represent the same

model) can be shown to be decidable with some knowledge in tree automata theory, but

can also be solved e.g. by a translation to clause sets and resolution re�nements (see [8]).

Note also that in many practical situations specifying a model by a recursive de�nition of

properties (under the closed world assumption), which is nothing else than a grammar's

rule set, may be preferable among the explicit notation of a much bigger �nite model.

Still there's a very natural relation between the (indeterministic) grammar and the �nite

model. Although the equivalence with a �nite model does yield a clause set evaluation

procedure by enabling us to construct the equivalent �nite model and evaluate all possible

instances of every clause C in a clause set C, this procedure is extremely ine�cient due to

the exponential blow-up from grammar nonterminals to �nite domain members.

3

That's

of arbitrary arity). Note that this is no loss of generality, as we always get a sat-equivalent formula via the

translation P (t

1

; : : : ; t

n

) to T (p(t

1

; : : : ; t

n

)) (p being a new n-place function symbol for every predicate P

and T being an entirely new predicate). Additionally any model of the T (p(: : :))-formula can be trivially

translated to one of the original formula.

2

i.e. generated by an arbitrary context-free (string) grammar. Example: The language ff(a)g generated

by S �! AB;A �! f(; B �! a) can also be generated by S �! f(Q); Q �! a.

3

Recall that in the usual construction there are exponentially many nonterminals in the deterministic

grammar and there may be exponentially many �nite domain members than there were nonterminals in

the original grammar.

92

why developing more e�cient procedures remained an interesting target.

2 Clause Evaluation On Context-Free Interpretations

To avoid the explicit construction of the �nite model we asked ourselves whether we could

evaluate clause sets directly on the grammar. Di�culties arise from the fact that the

grammar resembles an indeterministic tree automaton, for which we want to avoid explicit

determination. However we can utilize the connections between syntactical properties of

the interpretation and the truth of formulas to design the following evaluation procedure:

Let G = (A

�

;P [N ;�) be a �xed at term grammar. �[P; f] is de�ned to be the set

of productions � � that have the form P �! f(: : :), where P 2 P [N is a nonterminal

and f is a function symbol. We analogously de�ne �[P; a] for constant symbols a.

Now let's start with a clause set C for which we want to know whether it eval-

uates to true in the model speci�ed by the grammar G (in the sense described be-

fore) or not, i.e. we want to know whether �

G

j= C. Now observe that if �[P; f] =

fP �! f(Q

1

1

; Q

1

2

; : : : Q

1

n

); : : : ; P �! f(Q

k

1

; Q

k

2

; : : : Q

k

n

)g this means that �

G

j= P (f(x

1

; x

2

;

: : : x

n

)) $ ((Q

1

1

(x

1

) ^ : : : ^Q

1

n

(x

n

)) _ : : : _ (Q

k

1

(x

1

) ^ : : : ^Q

k

n

(x

n

))). We can denote this

formula negatively too: �

G

j= :P (f(x

1

; x

2

; : : : x

n

))$ ((:Q

1

1

(x

1

) _ : : : _:Q

1

n

(x

n

)) ^ : : : ^

(:Q

k

1

(x

1

)_ : : :_:Q

k

n

(x

n

))). Now take these formulas as rewrite rules (to be used from the

left to the right) that let us reduce the literals in a clause set C. (Clearly we have to use

the law of distributivity after every application of a rewrite rule to get a clause set again).

We write C 7! C

0

, if C

0

is the clause form of the result of applying one of above mentioned

rewrite rules to C. Clearly �

G

j= C , �

G

j= C

0

. As we reduce the term-depth of the literals

in each step, we must reach an irreducible form when repeatedly applying the rules. Since

we have only one applicable rule for every literal this irreducible form is unique.

4

Let's

call it C

0

. Because every literal in C

0

is irreducible, it is either of the form (:)P (x) where

x is a variable or (:)P (a) where a is a constant symbol. Clearly we can decide whether

�

G

j= C

0

, if we can decide whether �

G

j= C for a single clause C 2 C

0

. Let's write C[x] for

the set of all literals on the variable x in C. C[const] shall denote the set of ground literals

in C. Thus C = C[x

1

] _ C[x

2

] _ : : : _ C[x

m

] _ C[const]. Clearly �

G

j= C i� �

G

entails at

least one of the C[x

i

] or �

G

entails at least one of the literals in C[const]. Now recall the

de�nition of �

G

to see that a ground literal P (a) is true in �

G

i� a 2 L

P

, which can easily

be checked in the grammar. Thus it remains to evaluate whether �

G

j= C[x]. Observe

that C[x] corresponds to the formula 8xC[x]. Thus C[x] evaluates to true i� every ground

term makes at least one literal true in C[x]. In general some literals are positive and some

are negative in C[x], i.e. C[x] = :P

1

(x)_ : : : _:P

l

(x)_P

l+1

(x)_ : : : _P

m

(x). According

to the de�nition of the interpretation �

G

every ground term makes at least one of the

(:)P

i

(x) true i� (HD

�

n L

P

1

) [: : : [(HD

�

n L

P

l

) [L

P

l+1

[: : : [L

P

m

= HD

�

, which is

the case i� L

P

1

\ : : : \ L

P

l

� L

P

l+1

[: : : [L

P

m

. If there are either no negative or no

positive literals the situation is pretty much the same: the corresponding conditions are

HD

�

� L

P

1

[: : : [L

P

m

or L

P

1

\ : : : \ L

P

m

� ;, respectively.

Example. Let the Herbrand interpretation �

G

be given by the following grammar:

G = fff; a;

0

(

0

;

0

)

0

;

0

;

0

g; fP;Qg; fP �! f(Q); Q �! f(P); P �! agg, i.e. the interpre-

tation where fP (f

2i

(a)); Q(f

2i+1

(a))ji � 0g is true, the rest is false. Assume we want to

evaluate C = P (x)_P (f(x)) in this interpretation. The grammar rule P �! f(Q) corre-

sponds to the fact that P (f(x))$ Q(x), which we use as a rewrite rule (from left to right)

4

Modulo the AC-property of the connectives and modulo renaming of the variables.

93

on P (f(x)) to obtain C

0

= P (x) _ Q(x). Thus C evaluates to true i� L

P

[L

Q

= HD

�

.

We enhance the grammar by the rules T �! a; T �! f(T) (i.e. L

T

= HD

�

) and check for

L

T

� L

P

[L

Q

. On the other hand if we want to evaluate the clause C

0

= P (x)_P (f

2

(x)),

we end up with C

00

= P (x) _ P (x), so we have to check whether or not L

T

� L

P

.

Thus we are done, if we have procedures that decide (e�ciently) whether or not L

P

1

\

: : : \ L

P

n

� L

Q

1

[: : : [L

Q

m

for regular tree languages L

P

i

; L

Q

j

. It is well known that

this problem is decidable, but we are interested particularly in a solution that avoids the

exponential blow-up of the state-space that comes from determination of the corresponding

tree automata. In the next section we give an algorithm, that works directly on the

indeterministic automata (grammar).

3 Calculating with Regular Tree Languages

So we need a procedure to decide for a given at term grammar G whether or not L

P

1

\

: : : \ L

P

n

� L

Q

1

[: : : [L

Q

m

. The idea of the procedure is to algorithmically construct a

\proof by induction on term depth" for the truth or falsehood of the questioned property.

We use the following rules to unfold expressions of the form L

P

\ : : : � L

Q

[: : ::

(i): L

P

1

\ : : :\L

P

n

� L

Q

1

[: : :[L

Q

m

,

V

f

L

P

1

[f]\ : : :\L

P

n

[f] � L

Q

1

[f][: : :[L

Q

m

[f],

where L[f] denotes the restriction of the language L to f -terms and

V

f

ranges over

all function symbols and constant symbols,

(ii): If �[P; f] = fP �! f(P

1

; : : :); : : : ; P �! f(P

n

; : : :)g, then L

P

[f] = f(L

P

1

; : : :) [

: : : [f(L

P

n

; : : :),

5

(iii): L

A

[L

B

� L

C

() L

A

� L

C

^ L

B

� L

C

and

(iv): f(L

A

; : : :) \ f(L

B

; : : :) = f(L

A

\ L

B

; : : :),

Clearly these rules are correct. See that they enable us to unfold L

P

1

\ : : : \ L

P

n

�

L

Q

1

[: : : [L

Q

m

to a boolean formula consisting only of subformulas of the form f(L

A

1

\

: : : \ L

A

k

; : : : ; L

Z

1

\ : : : \ L

Z

k

) � f(L

A

0

1

; : : : ; L

Z

0

1

) [: : : [f(L

A

0

l

; : : : ; L

Z

0

l

), connected by ^

and _.

We start our procedure with an empty set H of induction hypothesis on an expression

L

P

1

\ : : :\L

P

n

� L

Q

1

[: : :[L

Q

m

. First we unfold it according to above rule set. We get

a boolean expression containing subformulas of the type f(: : :) � f(: : :) [: : : [f(: : :). In

the simplest case the subformula is just f(L

A

; : : : ; L

Z

) � f(L

A

0

; : : : ; L

Z

0

). We solve this

by recursively applying our method on each L

A

� L

A

0

; : : : ; L

Z

� L

Z

0

, with the enhanced

induction hypothesis H [fL

P

1

\ : : : \ L

P

n

� L

Q

1

[: : : [L

Q

m

g (because we stepped

one step downward in the term depth; this corresponds to the induction step). Any

more complicated case of f(: : : L

A

i

: : :) � f(: : : L

B

j

: : :) [: : : [f(: : : L

C

k

: : :) is similarly

solved by reducing it to a boolean expression over language inclusion properties of the

L

A

i

; L

B

j

; L

C

k

. See appendix Appendix A for technical details. We can once again use

our idea of \stepping downward" and reapply our procedure on the subproblems with an

enhanced induction hypothesis set. We can stop recursing and return true or false if we

come down to constant symbols (this check is trivial; it corresponds to the induction base),

or we can return true if the inclusion we have to test is a consequence of the induction

hypothesis, i.e. if we have to test whether L

P

1

\ : : : \ L

P

n

� L

Q

1

[: : : [L

Q

m

and there's

already a formula L

P

1

\ : : : \L

P

i

� L

Q

1

[: : : [L

Q

j

in the induction hypothesis set H for

some i � n; j � m.

5

With f(L

A

; L

B

; : : :) we denote the language that consists of all f terms that have a member of L

A

on

the �rst place, a member of L

B

on the second place and so forth.

94

So regardless whether L

P

1

\ : : :\L

P

n

� L

Q

1

[: : :[L

Q

m

is true or false, the procedure's

run can be seen as an inductive proof that this is the case, from which we can conclude

the correctness of the procedure. However, as our grammar has only �nitely many nonter-

minal symbols, there are only �nitely many possible induction hypothesis. As we always

enlarge the set of possible induction hypothesis, we can guarantee termination of the pro-

cedure. Note that evaluations in the di�erent recursion branches are totally independent,

giving way for various search algorithms and heuristics as well as for parallelization. Note

furthermore that the grammar we evaluate upon remains �xed, so every proposition about

it, once proven, remains true. It's an obvious and substantial improvement to maintain

a database of L

P

\ : : : � L

Q

[: : :-propositions that are already proven and to cut o� re-

cursive calls that would otherwise just re-prove known facts. In many practical examples

the algorithm terminates quickly on the constant symbol check. However a worst-case

exponential blow-up seems to be unavoidable due to the inherent di�culty of the problem

{ note that the language inclusion problem \is �

�

� L

R

?" for regular expressions R

(which resemble grammars with only unary function symbols) is PSPACE-complete (see

e.g. [1]) and the language intersection nonemptiness problem for regular tree languages

(i.e. whether L

P

1

\ : : : \ L

P

n

� ;) was shown to be EXPTIME-complete (e.g. in [12]).

Example. (continued) We denote our procedure as L

A

?

� L

B

jH, if we check whether or

not L

A

� L

B

under the induction hypothesis H. To check whether or not L

T

� L

P

[L

Q

we call L

T

?

� L

P

[L

Q

j; = f(L

T

)

?

� f(L

Q

) [f(L

P

)j; ^ fag

?

� fagj; =

= L

T

?

� L

Q

[L

P

jfL

T

� L

P

[L

Q

g ^ true = true ^ true = true.

On the other hand if we want to check L

T

� L

P

, we get

L

T

?

� L

P

j; = f(L

T

)

?

� f(L

Q

)j; ^ fag

?

� fagj; = L

T

?

� L

Q

jfL

T

� L

P

g ^ true =

= f(L

T

)

?

� f(L

P

)jfL

T

� L

P

g ^ fag

?

� ;jfL

T

� L

P

g ^ true =

= L

T

?

� L

P

jfL

T

� L

P

; L

T

� L

Q

g ^ false ^ true = true ^ false^ true = false.

With this algorithm we conclude our evaluation procedure for clause sets on a given

context-free interpretation. Knowing that every context-free interpretation is equivalent to

a �nite one and vice-versa, we got an interesting and not-so-obvious method for evaluating

arbitrary clause sets on �nite interpretations. Furthermore we think that our algorithm

will be of bene�t for a complexity analysis of the problem of interpreting clauses over

context-free interpretations because of its close relation to regular tree languages for which

many complexity results are known.

Appendix A

We illustrate that any expression of the form f(: : : L

A

i

: : :) � f(: : : L

B

j

: : :)[: : :[f(: : : L

C

k

: : :)

can be reduced to a boolean expression over language inclusion properties of the L

A

i

; L

B

j

; L

C

k

by solving the following example: We show that f(L

A

; L

A

0

) � f(L

C

; L

C

0

)[f(L

D

; L

D

0

) i�

(L

A

� L

C

[L

D

_ L

A

0

= ;) ^ (L

A

� L

D

_ L

A

0

� L

C

0

) ^ (L

A

� L

C

_ L

A

0

� L

D

0

) ^ (L

A

=

; _ L

A

0

� L

C

0

[L

D

0

).

Proof. f(L

A

; L

A

0

) � f(L

C

; L

C

0

) [f(L

D

; L

D

0

) holds i� for all ground terms t; t

0

it holds

that t 2 L

A

^ t

0

2 L

A

0

! (t 2 L

C

^ t

0

2 L

C

0

) _ (t 2 L

D

^ t

0

2 L

D

0

).

For notational convenience let us abbreviate \for all ground terms t it holds that" by 8t

and let's write X for t 2 L

X

and X

0

for t

0

2 L

X

0

. Thus the previous proposition reads

8t8t

0

A^A

0

! (C^C

0

)_ (D^D

0

), which is the case i� 8t8t

0

:A_:A

0

_ (C^C

0

)_ (D^D

0

),

which we can transform to the equivalent expression

8t8t

0

(:A_:A

0

_C_D)^ (:A_:A

0

_C_D

0

)^ (:A_:A

0

_C

0

D)^ (:A:A

0

_C

0

_D

0

).

95

We get an equivalent expression when we shift the quanti�ers over the ^ and _, so we

obtain ((8t

0

:A

0

)_ (8t:A_C_D))^ ((8t:A_C)_ (8t

0

:A

0

_D

0

))^ ((8t:A_D)_ (8t

0

:A

0

_

C

0

)) ^ ((8t:A) _ (8t

0

:A

0

_ C

0

_D

0

)),

which expresses nothing else than (L

A

0

= ; _ L

A

� L

C

[L

D

) ^ (L

A

� L

C

_ L

A

0

�

L

D

0

) ^ (L

A

� L

D

_ L

A

0

� L

C

0

) ^ (L

A

= ; _ L

A

0

� L

C

0

[L

D

0

). ut

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer algorithms. Addison-

Wesley, Reading, Ma., 1974.

[2] R. Caferra and N. Peltier. Decision procedures using model building techniques. In Computer Science

Logic (9th Int. Workshop CSL'95), pages 131{144, Paderborn, Germany, 1995. Springer Verlag. LNCS

1092.

[3] R. Caferra and N. Zabel. A method for simultanous search for refutations and models by equational

constraint solving. Journal of Symbolic Computation, 13(6):613{641, June 1992.

[4] C. Ferm�uller and A. Leitsch. Hyperresolution and automated model building. J. of Logic and Com-

putation, 6(2):173{203, 1996.

[5] C. Ferm�uller and A. Leitsch. Decision procedures and model building in equational clause logic.

Journal of the IGPL, 1997. to appear.

[6] F. G�ecseg and M. Steinby. Tree Automata. Akad�emiai Kiad�o, Budapest, 1984.

[7] R. Matzinger. Comparing computational representations of Herbrand models. In A. Leitsch, editor,

Computational Logic and Proof Theory, 5th Kurt G�odel Colloquium, KGC'97, volume 1289 of LNCS,

pages 203{218, Vienna, 1997. Springer.

[8] R. Matzinger. Computational representations of Herbrand models using grammars. In D.v. Dalen,

editor, Computer Science Logic, 10th International Workshop, CSL'96, volume 1258 of LNCS, pages

334{348, Utrecht, 1997. Springer.

[9] R. Matzinger. Context free term sets are regular - and some applications to logic. Technical Report

TR-WB-Mat-97-2, TU Wien, Vienna/Austria, 1997.

[10] J. Slaney. FINDER (�nite domain enumerator): Notes and guide. Technical Report TR-ARP-1/92,

Australien National University Automated Reasoning Project, Canberra, 1992.

[11] T. Tammet. Using resolution for deciding solvable classes and building �nite models. In Baltic

Computer Science, pages 33{64. Springer Verlag, 1991. LNCS 502.

[12] M. Veanes. On Simultaneous Rigid E-Uni�cation. PhD thesis, Computing Science Department,

Uppsala University, 1997.

96

