
Testing the Equivalence of Models

given through Linear Atomic Representations

(extended abstract)

Reinhard Pichler

�

Technische Universit�at Wien

September 29, 1997

1 Introduction and Basic De�nitions

Models may be of good use for automated theorem provers in 2 di�erent ways: Firstly to

give a hint as to why an input formula is not a theorem (e.g. by constructing a counter-

model) and, secondly, to speed up the deduction process itself (e.g.: by guiding the proof

search through semantic resolution re�nement). In any case, an appropriate representation

for models is called for. In [FL 96], linear atomic representations (= LAR's) of Herbrand

models are used. It is shown how such models can be constructed automatically for sat-

is�able clause sets of a certain syntax class. Furthermore an essential property of LAR's

is proven, which is absolutely necessary for any practically relevant model representation,

namely: the existence of algorithms both for deciding the equivalence of models and for

computing the truth value of an arbitrary clause in such a model.

What we are interested here is the e�ciency of decision procedures for the equivalence

of LAR's. Actually, both decision problems (i.e.: the equivalence of 2 LAR's and the

evaluation of a clause to true) have been shown to be coNP-complete (cf. [Got 97]).

Therefore, we cannot expect to �nd a polynomial algorithm without giving a positive

answer to the P = NP -Problem. However, what we can do is �nd out the real "source"

of complexity and make use of this theoretical result for devising an algorithm which

is, in general, considerably more e�cient than previously known algorithms, e.g.: the

orthogonalization method in [FL 96] and the transformation into equational problems in

[CP 95] followed by the solution method for equational problems described in [CL 89].

This paper is structured as follows: First we transform the original model equivalence

problem into another type of problem which we shall call the linear term tuple cover

problem, i.e.: Given a set M = f(t

11

; : : : ; t

1k

); : : : ; (t

n1

; : : : ; t

nk

)g of k-tuples of linear

terms over some Herbrand universe H . Is every ground term tuple (s

1

; : : : ; s

k

) 2 H

k

an

instance of some tuple (t

i1

; : : : ; t

ik

) 2M?

In chapter 3 we shall give an algorithm for the solution of the linear term tuple problem

along with a rough complexity estimation: Analogously to the methods of [FL 96] and

[CP 95], the algorithm is in principle exponential in the total size of the input problem.

�

Technische Universit�at Wien, Institut f�ur Computersprachen, Abteilung f�ur Anwendungen der For-

malen Logik, Resselgasse 3/1/3, A-1040 Wien, AUSTRIA, reini@logic.tuwien.ac.at

113

The main results of this paper are presented in chapter 4: In theorem 4.1 a strong (and,

yet, easy to check) criterion for the redundancy of term tuples is proven. By integrating

this redundancy criterion into the algorithm of chapter 3 we arrive at an algorithm which

is exponential in the number of term tuples (or, equivalently, in the number of atoms of the

original model equivalence problem). In contrast to the algorithms in [FL 96] and [CP 95],

the complexity of the expressions involved (e.g.: the arity of the predicate symbols and, in

particular, the term depth of the arguments) only has polynomial inuence on the overall

complexity of the algorithm. Finally, these results are illustrated by a simple example.

Due to space limitations, the basic concepts and notations from [FL 96] can only be

revised very briey here without formal de�nitions: An atomic representation (= AR) of a

(Herbrand) model H with signature � is a set A = fA

1

; : : : ; A

n

g of atoms over � with the

following intended meaning: a ground atom over � evaluates to true, i� it is an instance

of some atom A

i

2 A. In a linear atomic representation (= LAR), all atoms are linear,

i.e.: they have no multiple variable occurrences. Two ARs A and B are equivalent, i�

they represent the same (Herbrand) model, i.e.: the same ground atoms evaluate to true

in both models. We say that a set C = fC

1

; : : : ; C

n

g of clauses over � H-subsumes a clause

D, i.e.: fC

1

; : : : ; C

n

g �

H

ss

D, i� all ground instances of D w.r.t. H are subsumed by some

clause C

i

2 C. For a term t over H , we denote the set of ground instances of t by G

H

(t).

The generalization of these concepts to term tuples is obvious and will not be formally

de�ned here either, e.g.: By G

H

(t

1

; : : : ; t

k

) we denote the set of ground H-instances gen-

erated by the term tuple (t

1

; : : : ; t

k

). Moreover, proofs will only be sketched rather than

carried out in detail.

2 Transformation of the original Problem

In [FL 96], the following criterion for the equivalence of LAR's is stated:

Lemma 2.1 Let A = fA

1

; : : : ; A

n

g and B = fB

1

; : : : ; B

m

g be LAR's w.r.t. some Her-

brand universe H. Then A and B are equivalent, i�

1. 8j 2 f1; : : : ; mg: fA

1

; : : : ; A

n

g �

H

ss

B

j

2. 8i 2 f1; : : : ; ng: fB

1

; : : : ; B

m

g �

H

ss

A

i

This characterization of model equivalence provides the starting point for our consid-

erations. The following theorem shows how the H-subsumption criterion can be further

transformed:

Theorem 2.2 (transformation of the H-subsumption problem) Let B;A

1

; : : : ; A

n

be linear atoms over some Herbrand universe H. Furthermore, let V (B) := fx

1

; : : : ; x

k

g

denote the variables occurring in B and let � be de�ned as the set of uni�ers of pairs

(A

i

; B), i.e.:

� := f �; (9i) s.t. A

i

and B are uni�able with

�

0

:=mgu(A

i

; B) and � = �

0

j

V (B)

g.

Then the following equivalence holds:

fA

1

; : : : ; A

n

g �

H

ss

B i�

[

�2�

G

H

(x

1

�; : : : ; x

k

�) = H

k

:

114

Proof sketch: B is H-subsumed, i� all ground instances are subsumed by some A

i

.

Obviously, only those instances of the A

i

's play a role, which are uni�able with B, i.e.:

For every ground substitution �, B� must be subsumed by some A

i

�

0

i

= B�

0

i

= B�

i

, where

�

0

i

= mgu(A

i

; B) and �

i

= �

0

i

j

V (B)

. But this is the case, i� for every ground substitution �

(based on H), (x

1

�; : : : ; x

k

�) is a ground instance of some (x

1

�

i

; : : : ; x

k

�

i

). 3

As far as complexity is concerned, the original model equivalence problem and the

resulting collection of term tuple cover problems are basically the same: Both problems

are coNP-complete; the number of (term tuple cover-) subproblems and the number of

term tuples within each subproblem are restricted by the number of atoms; the total

length of each term tuple cover problem is restricted by the length of the original model

equivalence problem; etc. Furthermore, the above transformation preserves linearity, i.e.:

no term tuple in the resulting cover problems has multiple variable occurrences.

3 Solution of the Term Tuple Cover Problem

Theorem 3.1 The procedure TERM TUPLE COVER given below decides the linear term

tuple cover problem, i.e.: it terminates on every set of linear term tuples and it returns

the value "true", i� the input set of term tuples covers all of H

k

.

function TERM TUPLE COVER (k, n, M): boolean;

/* k = dimension of the tuples */

/* n = number of tuples in M */

/* M = f(t

11

; : : : ; t

1k

); : : : ; (t

n1

; : : : ; t

nk

)g */

begin

if n = 0 then return false;

if k = 0 then return true;

if for all i 2 f1; : : : ; ng; j 2 f1; : : : ; kg t

ij

is a variable

then return true;

j := min(f�; (9i)t

i�

g is a non-variable termg);

for all f

�

2 FS(H) begin

/* f

�

denotes a function symbol with arity �. */

/* Constant symbols are considered as function symbols with arity 0. */

M

0

:= f(s

(ij)

1

; : : : ; s

(ij)

�

; t

i(j+1)

; : : : ; t

ik

); t

ij

= f(s

(ij)

1

; : : : ; s

(ij)

�

)g;

/* i.e.: collect all tuples, where t

ij

has leading symbol f

�

*/

M

0

:=M

0

[f(x

(ij)

1

; : : : ; x

(ij)

�

; t

i(j+1)

; : : : ; t

ik

); t

ij

is a variable g;

/* i.e.: the x

(ij)

l

are fresh variables */

k

0

:= k � j + �;

n

0

:= jM

0

j;

if TERM TUPLE COVER (k

0

, n

0

, M

0

) = false then return false;

end f for g

return true;

end f TERM TUPLE COVER g.

Correctness, termination and complexity (sketch): The correctness of the above

algorithm is based on an idea, which is also central to the orthogonalization in [FL 96] and

to the explosion rule for solving equational problems in [CL 89], namely:

H =

[

f2FS(H)

G

H

�

f(x

1

; : : : ; x

�(f)

)

�

and, therefore, also

115

H

k

=

[

f2FS(H)

G

H

�

f(x

1

; : : : ; x

�(f)

)

�

�H

k�1

The branching into recursive calls corresponds to this case distinction: In each recur-

sive case, the term tuples with leading symbol di�erent from f are deleted and the term

tuples with a variable in the j-th position are restricted to those instances, where an

f -term is substituted for this variable. Finally the leading symbol f may be omitted,

since all term tuples share this leading symbol anyway, i.e.: the recursive calls are done

with the term tuple sets M

0

=

S

n�

s

(i)

1

; : : : ; s

(i)

�(f)

; t

i2

; : : : t

ik

�o

rather than with M

0

=

S

n�

f(s

(i)

1

; : : : ; s

(i)

�

); t

i2

; : : :t

ik

�o

. Furthermore, note that the deletion of leading variable

positions has no inuence on the correctness.

The termination is guaranteed by the fact, that the number of non-variable positions

(i.e.: the positions, where in some tuple a non-variable term occurs) strictly decreases

whenever TERM TUPLE COVER is called recursively.

As a by-product of the termination proof, we get the following estimation of the time

complexity: Procedure TERM TUPLE COVER is exponential in the number of non-vari-

able positions which, in general, corresponds to the total length of the input problem.

In particular, if the term depth of the term tuples is increased, then the complexity of

TERM TUPLE COVER grows exponentially. This property is shared by the algorithms

in [FL 96] and [CP 95].

4 Redundancy Criterion

In the previous chapter we have seen, that the non-variable positions of a term tuple

set are decisive for the complexity of procedure TERM TUPLE COVER. We shall now

give a redundancy criterion for term tuples based on the non-variable positions. The

integration of this redundancy criterion into procedure TERM TUPLE COVER leads to

a much smaller upper bound on the time complexity.

Theorem 4.1 (redundancy criterion based on non-variable positions) Let M =

fT

1

; : : : ; T

n

g be a set of linear term k-tuples w.r.t. some Herbrand universe H. Further-

more, let 1 � p � k be an index within the k-tuples (i.e.: p is a position of M which has

no subpositions).

Now suppose that at position p, there exist non-variable terms but some function symbol

f 2 FS(H) does not occur as leading symbol of any of these terms, i.e.: (9i) s.t. [T

i

jp] is

a non-variable term but (6 9i) s.t. [T

i

jp] is a term with leading symbol f . Then every term

tuple T 2 M with a non-variable term at position p is redundant and may, therefore, be

deleted, i.e.: Let M

0

:= fT 2M ; [T jp] is a non-variable termg. Then M covers all of H

k

,

i� M �M

0

does.

Proof sketch: Suppose that the set M = fT

1

; : : : ; T

n

g covers all of H

k

. Furthermore

let T be an arbitrary ground term tuple which is covered by some T

i

with a non-variable

term at position p. Then [T jp] is a term t with leading symbol g for some g 2 FS(H) s.t.

g 6= f .

Now let us look at the term tuple S which results from substituting an arbitrary term s

with leading symbol f for position p in T , i.e.: [Sjp] = s and S and T coincide everywhere

else. This term tuple S can obviously not be covered by any of the term tuples with a

non-variable term at position p, since any such non-variable term has a leading symbol g

di�erent from f . Hence S is subsumed by some term tuple T

j

, which has a variable x at

116

position p, i.e.: S = T

j

�, for some ground substitution �, s.t. x� = s.

Now de�ne the ground substitution � , where x� = t and y� = y� for all other variables.

Then the equality T = T

j

� holds and, therefore, T is also a ground instance of T

j

. 3

Note that (for a �xed Herbrand universe H) the redundancy criterion of theorem 4.1

can be easily tested in polynomial time. Nevertheless, it is, in general, even more powerful

than H-subsumption: An instance of some term tuple T 2 M is redundant, either if it

is H-subsumed by the other term tuples in M or if the term tuple cover problem M is

unsolvable anyway.

The following theorem puts this redundancy criterion to work by combining it with

the procedure TERM TUPLE COVER from chapter 3.

Theorem 4.2 (application of the redundancy criterion) The linear term tuple cover

problem can be decided in time O(2

n

+pol(N)), where n denotes the number of term tuples

and pol(N) is some polynomial function in the total length N of an input problem instance.

Proof sketch: We modify procedure TERM TUPLE COVER in the following way:

Before the for all f

�

- loop is entered, the redundancy criterion of theorem 4.1 is applied to

position j. If some function symbol f 2 FS(H) is missing as leading symbol of some term

at position j, then all term tuples with a non-variable term at position j are deleted and

TERM TUPLE COVER is called recursively with the remaining term tuples. Otherwise

the for all f

�

- loop is entered and executed as usual:

If jFS(H)j= 1, then the original procedure TERM TUPLE COVER does not branch at

all. Hence, it naturally has polynomial time complexity in the length of the input problem.

If jFS(H)j> 1, then the redundancy check immediately before the for all f

�

- loop has

the following e�ect: In case that some function symbol f is missing as a leading symbol

at the non-variable position j, then at least 1 term tuple is deleted in the recursive call of

TERM TUPLE COVER. If on the other hand, all function symbols f actually do occur

at position j, then the sets of term tuples in the recursive calls within the loop contain at

most (jM j� jFS(H)j+1) term tuples (since in the recursive call for each function symbol

f , the term tuples which have any other leading function symbol at position p are deleted).

The worst case occurs, when FS(H) contains only 2 function symbols: In this case, the

procedure branches into 2 recursive calls with at most M � 1 term tuples. 3

The following example illustrates the whole algorithm for the model equivalence prob-

lem of LARs.

Example 4.3 (summary of the model equivalence solution method) Let � =

fP

2

; Q

1

; f

2

; a

0

g be the signature which underlies the LARs A and B, with

A = fP (f(a; f(a; x); f(y; z)); P (f(x; f(a; a)); f(y; z)); Q(f(a; y));

P (f(x; f(a; f(y; z))); a); Q(f(b; y)); P (f(x; f(y; a)); z)g and

B = fP (f(u; f(a; v)); w); Q(f(x; y)); P (f(u; a); f(v; w))g

According to lemma 2.1, the model equivalence problem of A and B can be expressed

by 9 H-subsumption problems, each of which can be further transformed into a term

tuple cover problem. We only work out the �rst one here: By theorem 2.2 we know,

that A �

H

ss

P (f(u; f(a; v)); w) holds, i� M = f(a; x; f(y; z)); (x; a; f(y; z)); (x; f(y; z); a);

(x; a; z)g covers all of H

3

. The actual parameters and the actions carried out by the calls

of procedure TERM TUPLE COVER (combined with the redundancy criterion of theorem

4.1) are given below:

117

original call: M = f(a; x; f(y; z)); (x; a; f(y; z)); (x; f(y; z); a); (x; a; z)g

M is reduced (by theorem 4.1) to: M = f(x; a; f(y; z)); (x; f(y; z); a); (x; a; z)g.

Column 1 (consisting of variables only) is ignored.

1st recursive call (for a

0

2 FS(H) in column 2): M

1

= f(f(y; z)); (z)g

The �rst tuple is deleted by theorem 4.1.

The procedure returns true since the second tuple consists of variabels only.

2nd recursive call (for f

2

2 FS(H)): M

2

= f(y; z; a); g

Columns 1 and 2 (consisting of variables only) are ignored.

The only remaining tuple is deleted (by application of theorem 4.1 to column 3).

The next recursive call is done with the empty set and, hence, returns false.

The overall result of the original procedure call is false, i.e.: M does not cover H

3

.

Therefore, A does not H-subsume P (f(u; f(a; v); w) and, hence, the LARs A and B are

not equivalent.

5 Concluding Remarks and Future Work

The theoretical insight into the real "source" of complexity of the model equivalence prob-

lem of LAR's (namely the number of atoms rather than the total length of the input

problem) ultimately led to an algorithm which is, in general, considerably more e�cient

than previously known ones. A similar result for clause evaluation would be desirable. To

this end, 2 kinds of generalization are necessary, namely from atoms to clauses (containing

also negative literals) and from linear to non-linear expressions. Both directions of gen-

eralization are non-trivial, e.g.: The problem transformation in theorem 2.2 cannot easily

be extended so as to cope with negative literals. Furthermore, the redundancy criterion

in theorem 4.1 is no longer correct for non-linear term tuples. Hence, the investigation of

the clause evaluation problem must be left for future work.

Another aspect which deserves further investigation arises from the close relationship

between models and constraint solving: In chapter 1 it was already mentioned that the

problems of model equivalence and clause evaluation can be �rst transformed into equa-

tional problems and then tackled by constraint solving methods. In other words, algo-

rithms developed in the �eld of constraint solving can be directly applied to the problems

presented here. On the other hand, it would be interesting to �nd out in what way the

ideas presented in this paper can be applied to constraint solving.

References

[CL 89] H. Comon, P. Lescanne: Equational Problems and Disuni�cation, Journal of Symbolic Com-

putation, Vol 7, pp. 371-425 (1989).

[CP 95] R.Caferra, N.Peltier: Extending semantic Resolution via automated Model Building: appli-

cations, Proceedings of IJCAI'95, Morgan Kaufmann (1995).

[FL 96] C.Ferm�uller, A.Leitsch: Hyperresolution and Automated Model Building, Journal of Logic

and Computation, Vol 6 No 2, pp.173-230 (1996).

[Got 97] G.Gottlob: The Equivalence Problem for Herbrand Interpretations, unpublished note (1997).

118

