
Strong Symmetrization, Semi-Compatibility of Normalized

Rewriting and First-Order Theorem Proving

J�urgen Stuber

�

Max-Planck-Institut f�ur Informatik

1 Introduction

In automated �rst-order theorem proving the problems often contain such basic algebraic

objects as abelian groups or commutative rings. Theorem provers which treat the axioms of

such structures in the same way as the problem-speci�c part often run into a combinatoric

explosion of the search space, due to proli�c axioms like associativity, commutativity,

distributivity and the inverse law. Our goal is to reduce this search space by incorporating

common algebraic theories into specialized calculi. In general we assume that the theory

is given as a convergent term rewriting system T modulo some equational axioms E. By

systematically considering the interaction between T and problem-speci�c rules not in T

one can show that many inferences become redundant.

A central concept of our approach is symmetrization, which has been invented in the

context of (non-abelian) group theory (Le Chenadec 1986). A set S of rewrite rules is

symmetrized with respect to T , if all critical peaks between a rule in T and a rule in S

converge. Critical peaks between rules in S are not considered. For many important the-

ories the symmetrization is simple enough to immediately read it o� ground rewrite rules

in a certain normal form, instead of running a completion-like process. And, since the

structure of the symmetrization is known beforehand, one can analyse overlaps between

two symmetrizations and develop strong critical pair criteria for speci�c theories.

We introduce strong symmetrization, which goes slightly beyond symmetrization in

that it considers overlaps of rules from S within the symmetrization of a single rule. Less

strictly speaking, these are overlaps between variants with respect to the theory of a single

rule. Fortunately, the symmetrizations of commutative theories which we are interested

in are also strong symmetrizations. This is not the case in general; for instance in the

context of (non-abelian) groups, rules can have non-trivial overlaps with themselves.

The advantage of strong symmetrization is that it implies that normalized rewriting is

semi-compatible. That is, if we put a context around a normalized rewrite step s! t there

exists a normalized valley proof u[s] # u[t]. In completeness proofs for �rst-order theorem

proving with respect to a built-in theory we often have the situation that by induction

hypothesis a proof exist for a simpler case, and we want to prove that a more complicated

case doesn't need to be considered by an inference rule. The main technique is to take the

simple proof and transform it into a proof of the more complicated equation by putting

a suitable context around every term in it. However, the induction imposes a bound on

the terms in the proof. In cases where terms cancel each other this bound is violated

by the terms with context, but may be satis�ed by their normal forms. Now by semi-
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compatibility every rewrite step in the original proof is transformed into a valley proof,

which is bounded by the terms on its ends. Hence all terms in the new proof stay below

the bound. In our completeness proofs we use this technique both for proving critical pair

criteria and for simplifying equations to normal form. As an example we will show such

a simpli�cation for the case of commutative rings. Previously, Bachmair, Ganzinger and

Stuber (1995) could not handle this case in their calculus for commutative rings, because

their completeness proof was based on a di�erent technique.

Our work generalizes and makes explicit the construction of B�undgen (1996). He

considers the special case of polynomial rings in order to formalize the relation between

Knuth-Bendix completion and Gr�obner-base computation. Normalized rewriting is due to

March�e (1996), who develops Knuth-Bendix completion for built-in theories. For abelian

groups he also de�nes normal forms (which he calls symmetrization), but he explicitly

adds extended rules to obtain convergence with the theory. He doesn't consider special

critical pair criteria for overlaps of symmetrizations. Note that the construction in this

paper is needed for rings but not for abelian groups or integer modules (Stuber 1996).

2 Preliminaries

We assume that the reader is familiar with term rewriting (Dershowitz and Jouannaud

1990). We write s

!

! t if s

�

! t and t is irreducible; that is, t is a normal form of s. We

write T (s) for the normal form of s with respect to a convergent term rewriting system T .

We use � for object-level equality. For commutative rings we use the following well-known

term rewriting system CR modulo AC of Peterson and Stickel (1981):

x+ 0! x �(x+ y)! (�x) + (�y)

x+ (�x)! 0 x � 0! 0

x+ y + (�y)! x x � 1! x

�0! 0 x � (y + z)! (x � y) + (x � z)

�(�x)! x x � (�y)! �(x � y)

Function symbols not occurring in CR are called free, terms with a free symbol at the

root are called CR-atomic, and terms of the form t

1

� � � t

k

where t

1

; : : : ; t

k

are atomic are

called products and denoted by �.

Lemma 2.1 (Peterson and Stickel 1981) CR is convergent modulo AC.

We use a simpli�cation ordering � which is AC -compatible, total on ground terms, and

which orients the rules in CR and in the symmetrization below left-to-right. Such an

ordering can be constructed as the lexicographic combination of the MAPO of Delor and

Puel (1993), the polynomial ordering of Peterson and Stickel (1981), and the AC-RPO of

Rubio and Nieuwenhuis (1993).

3 Symmetrization

A set of rewrite rules S is called symmetrized with respect to T modulo E if for all peaks

t

1

 

EnT

t!

EnS

t

2

and for all cli�s t

1

$

E

t!

EnS

t

2

we have t

1

#

En(T[S)

t

2

. The set S is

called strongly symmetrized with respect to T modulo E if it can be partitioned into sets

S

i

, i 2 I , such that T [ S

i

is convergent modulo E for all i 2 I .

Proposition 3.1 If a set of rewrite rules S is strongly symmetrized with respect to T

modulo E then S is symmetrized with respect to T modulo E.
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Proof: Consider some peak t

1

 

EnT

t!

EnS

t

2

or cli� t

1

$

E

t!

EnS

t

2

. The rule from S

is in some S

i

, and by convergence of T [ S

i

we get the desired valley proof. 2

Note that S being strongly symmetrized implies that peaks of the form t

1

 

EnS

i

t!

EnS

i

t

2

converge, which is not guaranteed if S is symmetrized but not strongly symmetrized.

In order to give a simple correspondence between equations and their symmetriza-

tions we restrict the computation of symmetrizations to a certain subset of ground equa-

tions Norm

T

. The equations in Norm

T

are said to be in T -normal form. Then a (strong)

symmetrization function S

T

(for T ) maps each equation l � r in T -normal form to a

(strongly) symmetrized set of rewrite rules S

T

(l � r) such that E[T[fl � rg j= S

T

(l � r)

and l #

En(T[S

T

(l�r))

r. We call a rule l

0

! r

0

in S

T

(l! r)nfl! rg an extension (of l ! r).

For commutative rings we say that a ground equation is in CR-normal form if it is of

one of the forms (i) 0 � 0; (ii) n� � r where n � 1 and � � r. Note that the right-hand

side cannot contain �. Also, r need not be irreducible with respect to CR, in order to

avoid unneccessary CR-rewrite steps which would lead to additional inferences. The sym-

metrization function can be determined by hand by starting with an equation in normal

form and adding critical pairs. For commutative rings we obtain:

S

CR

(0 � 0) = ; (1)

S

CR

(t � r) = ft! rg (2)

S

CR

(� � r) = f�! rg (3)

[ fu�! u � r j u ground termg (4)

S

CR

(n� � r) = fn�! rg (5)

[ fn(u�)! u � r j u ground termg (6)

[ fu+ n�! u+ r j u ground termg (7)

[ fu

1

+ n(u

2

�)! u

1

+ u

2

r j u

1

and u

2

ground termsg (8)

[ f��! (n� 1)�+ (�r)g (9)

[ f�(u�)! (n� 1)(u�) + u(�r) j u ground termg (10)

Proposition 3.2 S

CR

is a strong symmetrization function for CR modulo AC.

Proof: By case analysis on all peaks and cli�s in CR [ S

CR

(l � r) for all l � r. Each S

i

is chosen as the symmetrization of a single equation. We have also used the Cime system

of March�e to verify this for some special cases of n and �. 2

4 Unrestricted vs. Normalized Rewriting

Normalized rewriting gives rules from T priority over rules from S. It is due to March�e

(1996). For rewrite relations !

EnR

and !

EnT

we de�ne T -normalized rewriting with R

by s !

En(T !R)

t if and only if s

!

!

EnT

u and u!

EnR

t. We write s #

En(T !R)

t for a valley

proof of the form s

�

!

En(T !R)

s

0

�

$

E

t

0

�

 

En(T !R)

t and say that En(T !R) is Church-Rosser

modulo E if s

�

$

E[T[R

t implies that s #

En(T[R)

t for all terms s and t.

Lemma 4.1 Let T [ R be terminating modulo E. Then En(T [ R) is Church-Rosser

modulo E if and only if En(T !R) is Church-Rosser modulo E.

Proof: Since #

En(T !R)

� #

En(T[R)

the if-direction is trivial. For the only-if-direction the

proof is by induction on the following proof ordering: Let � be

�

!

(T[R)=E

extended by
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a new minimal element ?. We order proof steps with respect to � according to the

complexity measure

c(s!

EnR

t) = c(t 

EnR

s) = s

c(s!

EnT

t) = c(t 

EnT

s) = ?

c(s$

E

t) = ?;

i.e., only the larger sides of R-steps count. As the proof ordering we use the multi-

set extension of the ordering on proof steps. Consider some proof s

�

$

E[T[R

t. Then

s #

En(T[R)

t. Suppose s 6#

En(T !R)

t, then there exists an R-step u !

EnR

v (or v  

EnR

u)

in s #

En(T[R)

t whose larger side u is reducible by T . For u

0

 

EnT

u!

EnR

v there exists

a proof u

0

#

En(T[R)

v, and we may replace the subproof u !

EnR

v by the smaller sub-

proof u !

EnT

u

0

#

En(T[R)

v. All in all we obtain a smaller proof s #

En(T[R)

u

0

#

En(T[R)

v #

En(T[R)

t and by induction hypothesis s #

En(T !R)

t, a contradiction. 2

This suggests that T -normalized rewriting with R can be interchanged with rewriting

with T [R, without a change in the critical pairs to be considered.

5 Semi-Compatibility of Normalized Rewriting

A relation !

R

is semi-compatible if s !

R

t implies u[s] #

R

u[t] for all terms s and t and

contexts u. Semi-compatibility was introduced by B�undgen (1996).

Lemma 5.1 Let S be a set of ground rewrite rules which is strongly symmetrized with

respect to T modulo E. Then T -normalized rewriting with R modulo E is semi-compatible.

Proof: Consider a rewrite step s !

En(T !S)

t and a context u. Then there exists a not

necessarily normalized valley proof of u[s] � u[t] by putting the context u around every

term in the proof that represents the normalized rewrite step. Since this proof contains

only one S-step all needed rules are in T [S

i

for some i 2 I , where (S

i

)

i2I

is the partition

of S in the de�nition of strong symmetrization. Since T [ S

i

is convergent modulo E, by

Lemma 4.1 there also exists a valley proof of u[s] � u[t] by normalized rewriting. 2

Without strong symmetrization it is not possible to remove all peaks between two rules

from S, which are introduced when the symmetrization property is applied to remove sev-

eral S=T -peaks consecutively. These S=S-peaks are not bounded by the normal form of a

term in the original proof with added context. In contrast to this, strong symmetrization

and in turn semi-compatibility of normalized rewriting lead to proofs which are bounded

by the T -normal forms of the terms in the proof with added context.

u[t

1

] u[t

2

] u[t

3

]

T (u[t

1

]) T (u[t

2

]) T (u[t

3

])

� � � �

!T !T !T

�

T[S

�

T[S

�

T[S

�

T[S

�

E

�

E

6 An Application to First-Order Theorem Proving

In the calculus specialized to commutative rings we have the following special case of the

Isolation ground inference, which is used to bring negative literals into T -normal form:

p 6� ��+ q

� 6� q + (�p)
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where � � p and � � q. In the completeness proof we have to infer from the existence of

a valley proof p #

T[S

�� + q that there exists a proof of � � q + (�p) which is bounded

by �� + q. The following diagram shows how this is achieved:

�+ (�p) + p

�� + q + �+ (�p)

�+ (�p) + t

0

� (�p) + q

�

CR[S

�

CR[S

�

CR

�

CR

���+q

AC[CR[S

The dotted proof results from taking the dashed proof, which operates on the boxed for-

mulas, putting the context � + (�p) + [ ] around it, and using the construction of the

previous section. Finally, the dotted proof stays below the bound ��, because the normal

forms in the transformed proof contain no negated occurrence of the maximal term �,

and the ordering is constructed in such a way that any number of positive occurrences is

always smaller than one negative occurrence.
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