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1 Introduction

Variable overlaps (via extended clauses) are one of the main sources for the ine�ciency

of AC or ACU superposition calculi. In the presence of the inverse axiom x + (�x) � 0

(Inv), or at least the cancellation axiom x+ y � x+ z ) y � z (K), ordering restrictions

allow us to avoid some of these overlaps, but inferences with unshielded, i.e., potentially

maximal, variables remain necessary (Waldmann [2]).

In non-trivial divisible torsion-free abelian groups (e.g., the rational numbers), the

axioms ACUInv are extended by the torsion-freeness axiom 8k 2 N

>

0

: kx � ky ) x � y

(T), the divisibility axiom 8k 2 N

>

0

8x9y: ky � x (Div), and the non-triviality axiom

9y: y 6� 0 (Nontriv). We show that in such structures every clause can be transformed into

an equivalent clause without unshielded variables. This transformation is not necessarily

a simpli�cation in the superposition calculus: some ground instances of the transformed

clause may be too large. It turns out, however, that all the critical instances can be handled

by case analysis.

The resulting calculus requires neither extended clauses, nor variable overlaps, nor

explicit inferences with the theory axioms. Furthermore, even AC uni�cations can be

avoided, if abstractions are performed eagerly.

2 Preliminaries

We work in a many-sorted framework and assume that the function symbol + is declared

on a sort S

G

. If t is a term of sort S

G

and n 2N, then nt is an abbreviation for the n-fold

sum t + � � �+ t; in particular, 0t = 0 and 1t = t.

A function symbol is called free, if it is di�erent from 0 and +. A term is called atomic,

if it is not a variable and its top symbol is di�erent from +. We say that a term t occurs

at the top of s, if there is a position o 2 pos(s) such that sj

o

= t and for every proper

pre�x o

0

of o, s(o

0

) equals +; the term t occurs in s below a free function symbol, if there

is an o 2 pos(s) such that sj

o

= t and s(o

0

) is a free function symbol for some proper pre�x

o

0

of o. A variable x is called shielded in a clause C, if it occurs at least once below a free

function symbol in C, or if it does not have sort S

G

. Otherwise, x is called unshielded.

We say that an ACU-compatible ordering has the multiset property, if whenever a

ground atomic term u is greater than v

i

for every i in a �nite index set I 6= ;, then

u �

P

i2I

v

i

.

�
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From now on we will work only with ACU-congruence classes, rather than with terms.

So all terms, equations, substitutions, inference rules, etc., are to be taken modulo ACU,

i.e., as representatives of their congruence classes. The symbol � will always denote an

ACU-compatible ordering that has the multiset property and is total on ground ACU-

congruence classes (Waldmann [2]).

Let e be a ground equation nu +

P

i2I

s

i

� mu +

P

j2J

t

j

, where u, s

i

, and t

j

are

atomic terms, n � m � 0, n � 1, and u � s

i

and u � t

j

for all i 2 I , j 2 J . Then u is

called the maximal atomic term of e.

The ordering �

L

on literals compares lexicographically �rst the maximal atomic terms

of the equations, then the polarities (negative � positive), then the multisets of all non-

zero terms occurring at the top of the equations, and �nally the multisets consisting of

the left and right hand sides of the equations. The ordering �

C

on clauses is the multiset

extension of the literal ordering �

L

.

The symbol j=

ACUKT

denotes entailment modulo equality and ACUKT. In other words,

fC

1

; : : : ; C

n

g j=

ACUKT

C

0

if and only if fC

1

; : : : ; C

n

g [ ACUKT j= C

0

.

3 Cancellative Superposition

The inference system CS-Inf

N

>

0

of the cancellative superposition calculus (Waldmann [2])

consists of the inference rules equality resolution, standard superposition, standard equality

factoring, cancellation, negative cancellative superposition, positive cancellative superposi-

tion, abstraction, and cancellative equality factoring. The �rst three rules are de�ned es-

sentially as in the traditional superposition calculus (Bachmair and Ganzinger [1]), ground

versions of the remaining ones are given below.

The following conditions are common to all the inference rules: Every literal involved

in some inference must be maximal in the respective premise (except for the last but

one literal in equality factoring inferences). A positive literal involved in a superposition or

abstraction inference must be strictly maximal in the respective clause. In all superposition

and abstraction inferences, the left premise is smaller than the right premise. Standard

superpositions and abstractions take place only in maximal atomic subterms.

Cancellation

C

0

_ [:]mu + s � m

0

u + s

0

C

0

_ [:] (m�m

0

)u+ s � s

0

if m � m

0

� 1 and u � s, u � s

0

.

Neg. Canc. Superposition

D

0

_ nu + t � t

0

C

0

_ :mu+ s � s

0

D

0

_ C

0

_ :  s+ �t

0

� �t +  s

0

if m� 1, n� 1,  = n=gcd(m;n), �=m=gcd(m;n), and u� s,

u � s

0

, u � t, u � t

0

.

Pos. Canc. Superposition

D

0

_ nu + t � t

0

C

0

_ mu+ s � s

0

D

0

_ C

0

_ (m� n)u+ s+ t

0

� t + s

0

if m � n � 1 and u � s, u � s

0

, u � t, u � t

0

.

Abstraction

D

0

_ nu + t � t

0

C

0

_ [:] s[w] � s

0

C

0

_ : y � w _ [:] s[y] � s

0
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if n � 1, w = mu+ q occurs in s immediately below some free

function symbol, m � 1, nu + t is not a subterm of w, and

u � t, u � t

0

, s[w] � s

0

.

Canc. Eq. Factoring

C

0

_ nu+ t � n

0

u+ t

0

_ mu+ s � s

0

C

0

_ :  t+ �s

0

� �s +  t

0

_ nu+ t � n

0

u+ t

0

if m � 1, n > n

0

� 0, � = n � n

0

,  = m= gcd(m; �), � =

�= gcd(m; �), and u � s, u � s

0

, u � t, u � t

0

.

The inference system CS-Inf

N

>

0

is sound with respect to ACUKT, i. e., for every

inference with premises C

1

; : : : ; C

n

and conclusion C

0

, we have fC

1

; : : : ; C

n

g j=

ACUKT

C

0

.

To make a saturation-based theorem proving technique practically useful, the inference

system has to be complemented with a redundancy criterion. Given a set N of clauses, a

clause is redundant with respect to N , if it follows from the equality and ACUKT axioms

and smaller clauses in N . It can be deleted from the current set of clauses at any point of

the saturation process. An inference is redundant, if its conclusion follows from the equality

and ACUKT axioms and clauses in N that are smaller than the largest premise. It may be

ignored during the saturation process without endangering the fairness of the derivation.

To lift the inference rules equality resolution, standard superposition, and standard

equality factoring to non-ground premises, we proceed as in the standard superposition

calculus: equality in the ground inference rule is replaced by uni�ability.

As long as all variables in our clauses are shielded, the remaining inference rules can

be lifted in a similar way: In a clause C = C

0

_ [:] e

1

, the maximal equation e

1

need

no longer have the form mu + s � s

0

, where u is the unique maximal atomic term.

Rather, it may contain several (distinct but ACU-uni�able) maximal atomic terms u

k

with multiplicities m

k

, where k ranges over some �nite non-empty index set K. We obtain

thus e

1

=

P

k2K

m

k

u

k

+ s � s

0

, where

P

k2K

m

k

corresponds to m in the ground equation

above. As in the standard superposition rule, the substitution � that uni�es all u

k

(and the

corresponding terms v

l

from the other premise) is applied to the conclusion. For instance,

the negative cancellative superposition rule has now the following form:

Negative Cancellative Superposition

D

0

_

P

l2L

n

l

v

l

+ t � t

0

C

0

_ :

P

k2K

m

k

u

k

+ s � s

0

(D

0

_ C

0

_ :  s+ �t

0

� �t +  s

0

)�

if the following conditions are satis�ed:

{ m =

P

k2K

m

k

� 1, n =

P

l2L

n

l

� 1.

{  = n= gcd(m;n), � = m= gcd(m;n).

{ � is a most general ACU-uni�er of all u

k

and v

l

(k 2 K; l 2 L).

{ u

1

� 6� s�, u

1

� 6� s

0

�, u

1

� 6� t�, u

1

� 6� t

0

�.

In the presence of unshielded variables, it is still possible to devise lifted inference rules

that produce only �nitely many conclusions for a given tuple of premises, but these rules

are signi�cantly more complicated than the rules given above. Furthermore, as uni�cation

is not an e�ective �lter when one of the terms to be uni�ed is a variable, clauses with

unshielded variables lead to an enormous growth of the search space. In the sequel, we will
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show that the axioms DivInvNontriv allow us to eliminate unshielded variables completely.

To this end we will construct a new inference system that is closed under clauses without

unshielded variables.

4 Variable Elimination: The Logical Side

Let x be a variable. We de�ne a noetherian binary relation !

x

over clauses by

(CancelVar) C

0

_ [:]mx+ s � m

0

x+ s

0

!

x

C

0

_ [:] (m�m

0

)x+ s � s

0

if m � m

0

� 1.

(ElimNeg) C

0

_ :mx+ s � s

0

!

x

C

0

if m � 1 and x does not occur in C

0

; s; s

0

.

(ElimPos) C

0

_ m

1

x+ s

1

� s

0

1

_ : : : _ m

k

x+ s

k

� s

0

k

!

x

C

0

if m

i

� 1 and x does not occur in C

0

; s

i

; s

0

i

, for 1 � i � k.

(Coalesce) C

0

_ :mx+ s � s

0

_ [:] nx + t � t

0

!

x

C

0

_ :mx+ s � s

0

_ [:]  t+ �s

0

�  t

0

+ �s

if m � 1, n � 1,  = m= gcd(m;n), � = n= gcd(m;n), and x does not occur

at the top of s; s

0

; t; t

0

.

The binary relation!

elim

over clauses is de�ned in such a way that C

0

!

elim

C

1

if and

only if C

0

contains an unshielded variable x and C

1

is a normal form of C

0

with respect

to !

x

. The relation !

elim

is noetherian; for a clause C, elim(C) denotes some (arbitrary

but �xed) normal form of C with respect to!

elim

. It is easy to check that elim(C) contains

no unshielded variables.

Lemma 4.1 For every clause C, felim(C)g j=

ACUKT

C and fCg[DivInvNontriv j=

ACUKT

elim(C). Furthermore, for every ground instance C�, felim(C)�g j=

ACUKT

C�.

Proof. If C

0

!

x

C

1

by (CancelVar), the equivalence of C

0

and C

1

modulo ACUKT follows

from cancellation; for (Coalesce), from cancellation and torsion-freeness. The soundness of

(ElimNeg) follows from the divisibility and and inverse axiom, for (ElimPos) it is implied

by torsion-freeness and non-triviality [2]. 2

5 Variable Elimination: The Operational Side

Using the technique sketched above, every clause C can be transformed into a clause

elim(C) that contains no unshielded variables, implies C modulo ACUKT, and follows

from C and ACUKT [ DivInvNontriv. However, these properties are not su�cient for a

simpli�cation in a superposition-based calculus: to make the simpli�ed clause redundant,

it is necessary that each of its ground instances follows from smaller instances of the

simplifying clause. But this is not guaranteed for our variable elimination algorithm.

Let � be an inference. We call the unifying substitution that is computed during � and

applied to the conclusion the pivotal substitution of �. (For abstraction inferences and all

ground inferences, the pivotal substitution is the identity mapping.) If u is the atomic

term that is cancelled out in �, or in which some subterm is replaced or abstracted out,

and � is the pivotal substitution of �, then we call u� the pivotal term of �. Finally, if [:] e
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is the last literal of the last premise of �, we call [:] e� the pivotal literal of �.

Pivotal terms have two important properties: First, whenever an inference � from

clauses without unshielded variables produces a conclusion with unshielded variables, then

all these unshielded variables occur in the pivotal term of �. Second, no atomic term in

the conclusion of � can be larger than the pivotal term of �.

Lemma 5.1 Let � be a non-abstraction inference from clauses without unshielded variables

with maximal premise C, conclusion C

0

, pivotal literal [:] e, and pivotal term u; let C

1

=

elim(C

0

). Let �� be a ground instance of �. If C� 6�

C

C

1

�, then the multiset di�erence C

1

nC

0

contains a literal [:] e

1

, such that [:] e

1

has the same polarity as [:] e, an atomic term u

1

occurs at the top of [:] e

1

, and for every minimal complete set U of ACU-uni�ers of u and

u

1

, there is a �2U such that C

0

� is a ground instance of C

0

�. Furthermore, for every �2U ,

C

0

� has no unshielded variables. (A similar property holds for abstraction inferences.)

We can now modify the inference system CS-Inf

N

>

0

in such a way that the new infer-

ence system is closed under clauses without unshielded variables: Whenever a CS-Inf

N

>

0

-

inference � with pivotal term u produces a clause C

0

with unshielded variables, then we

add elim(C

0

) to the current set of clauses. Furthermore, for every literal [:] e

1

in the

multiset di�erence elim(C

0

) n C

0

with the same polarity as the pivotal literal of �, and

for every atomic term u

1

occurring at the top of [:] e

1

, we add all clauses C

0

�, where �

ranges over a minimal complete set of ACU-uni�ers of u and u

1

. By the lemma above, this

renders the inference � redundant, so there is no need to add C

0

.

For example, let C = 3x 6� c _ x + f(z) � 0 _ f(x) + b � f(y). If a cancellation

inference � from C yields C

0

= 3x 6� c _ x+ f(z) � 0 _ b � 0, then we add elim(C

0

) =

c + 3f(z) � 0 _ b � 0, and, as the pivotal term f(x) is uni�able with f(z), the clause

C

0

� = 3z 6� c _ z + f(z) � 0 _ b � 0. The clause elim(C

0

) makes all ground instances ��

redundant that satisfy C� �

C

elim(C

0

)�, that is, in particular, all ground instances with

x� � z�. The only remaining ground instances are those where x� = z�; these are made

redundant by C

0

�.

A clause C is called fully abstracted, if no non-variable term of sort S

G

occurs below

a free function symbol in C. It is easy to check that the new inference system preserves

full abstraction. If we abstract out all atomic terms of sort S

G

in advance in the input of

the inference system, then all terms that have to be uni�ed during the saturation have

the property that they do not contain the operator +. For such terms, ACU-uni�cation

and ordinary uni�cation are equivalent. Therefore, our calculus allows us to avoid not only

variable overlaps, but even ACU-uni�cation completely.

Acknowledgments: Thanks to Harald Ganzinger for pointing out to me that abstraction

allows us to avoid ACU-uni�cation completely and to J�urgen Stuber for helpful comments

on this paper.
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