

Faculty of Informatics

Diplomarbeitspräsentation

Algorithms for Quantified Cut-Introduction

Technische Universität Wien Theory and Logic Group Arbeitsbereich: Theoretische Informatik und Logic BetreuerIn: Univ.-Prof. Dr.phil. Alexander Leitsch

Masterstudium: **Computational Intelligence**

Christoph W. Spörk

Motivation

Proofs as well as their understanding are of great importance to the scientific community. They can appear in various forms, e.g. as semantic argument or as deviation in a particular calculus. The latter can be represented in sequent-calculus and consists of several rules. One of them is the **cut-rule**, which is not necessarily occuring in a derivation, but can be very helpful for

compressing such proofs. Proofs with cuts in sequent calculus contain lemmas which can give deeper insights into the meaning of a theorem. This thesis implements a method for introducing several quantified cuts in a cut-free proof in sequent caculus.

Mathod

Implementation of a method for introducing quantified cuts based on

[1] Algorithmic cut-introduction [2] Algorithmic compression of finite tree languages by rigid acyclic grammars

Integrated into an already existing architecture for proofs (GAPT) in Scala.

$P(x) \vdash P(x), P(f(x))) = P(x), P(f(f(x))) \vdash P(x), P(f(f(x))) \vdash P(x), P(f(f(x))) \vdash $	
$P(x), P(x), P(f(x)) \supset P(f(f(x))) \vdash P(x), P(f(f(x))), P(x), P(f(x))) \vdash P(f(f(x))) \vdash P(f(f(x))) \vdash P(f(f(x))) \vdash P(f(f(x))) $	-1
$P(x), P(x), P(f(x)) \supset P(f(f(x))), P(x), P(x), P(f(x)), P(f(x))) \xrightarrow{P(f(x))} f(f(x))), P(f(f(x))) \xrightarrow{P(f(x))} P(f(f(x))), P(f(f(x)))), P(f(f(x)))) \xrightarrow{P(f(x))} P(f(f(x))), P(f(f(x)))), P(f(f(x))))$	
 $P(x), P(f(x)) \supset P(f(f(x))), P(x), P(x), P(f(x)), P(f(x))) \supset P(f(f(x))) \supset P(f(f(x))) \rightarrow P(f(f(x)))) \rightarrow P(f(f(x))) \rightarrow P(f(f(x$	4.1
$P(x), P(x), P(x), P(f(x)), P(f(x)) \supset P(f(f(x))), P(x) \supset P(f(x)), P(x) \supset P(f(x)), P(x) \supset P(f(x)), P(f(f(x))), P(f(f(x))), P(f(f(x))), P(x) \supset P(f(f(x))))$	·
$P(x), P(x), P(x), P(f(x)), P(f(x)) \supset P(f(f(x))), (\forall x_0)(P(x_0) \supset P(f(x_0)) \land P(x_0)(P(x_0)) \land P(x_0)) \land P(x_0)(P(x_0)) \land P(x_0)(P(x_0)) \land P$	
$P(x), P(x), P(x), P(f(x)), P(f(x)) \supset P(f(f(x))), (\forall x_0) (P(f(x_0))) \land P(f(x_0)) \land P(f(f(x))), P(f(f(x))), P(f(f(x))), P(x) \supset P(f(f(x)))) \land P(x) \supset P(f(f(x))) \land P(x) \supset P(f(x)) \land P(x) \supset P(x) $	
D(A, D(A, D(A, A, A	

start at end sequent of a cut-free proof

 $P(0), \forall x P(x) \longrightarrow P(s(x)) \vdash P(s^8(x))$

(2) extract Herbrand sequent and and introduce artificial function symbols $P(0),f_1(P(s(0))),...,f_1(P(s'(0))) \vdash P(s^8(0))$

Compared to an existing approach, able to introduce a single quantified cut.

Both the single-cut and the many-cuts approach were **tested** by running a large set of experiments, including ...

... primitive **proof sequences** ... proofs from particular libraries (TPTP, etc.)

The performance was not improved significantly.

The possibility to **introduce more**

than one cut at a time represents a major improvement in the field of **cut-introduction**.

[1] Stefan Hetzl, Alexander Leitsch, Giselle Reis, and Daniel-Weller. Algorithmic introduction of quantified cuts. Theoretical Computer Science, 549, 2014.

[2] Sebastian Eberhard and Stefan Hetzl. Algorithmic compression of finite tree languages by rigid acyclic grammars. 2014.