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Abstract

In this thesis, we employ logic to increase our understanding of normative reasoning. We
do this by including agents in our formal analysis. Norms are inextricably linked to agents:
they provide reasons to act and influence how we shape our world. Nevertheless, agentive
aspects are often abstracted away, yielding oversimplified formalisms and understudied
themes. Furthermore, recent developments in Artificial Intelligence (AI) have created
novel challenges for the logical study of normative reasoning. This thesis addresses several
of these topics by assigning a pivotal position to agents. The conducted research is
interdisciplinary, drawing from methods in philosophy, logic, and Al

The thesis comprises three parts: (I) agency, (II) action, and (III) argumentation. In the
first two parts, we address normative reasoning by reasoning about agents. These parts
belong to well-established modal logic approaches in deontic logic. In the third part,
we employ methods from AI—in particular, formal argumentation and nonmonotonic
logic—to make formal normative reasoning more accessible to agents.

In Part I, we investigate how obligations impact the choices of agents. To do so, we adopt
and extend the agency logic of ‘Seeing To It That’ (STIT). We formally investigate the
limits of contrary-to-duty reasoning when reasoning about choices and obligations over
time. Furthermore, we conduct a comprehensive logical study of the principle of Ought
implies Can. We investigate ten interpretations of the principle and its relation to other
normative reasoning principles.

In Part II, we study ways in which obligations and prohibitions promote the actions
performed by agents. We focus on instrumentality statements, which express actions as
instruments for attaining ends. We develop a deontic action logic in which we analyze,
compare, and assess obligations and prohibitions about instruments. Furthermore, we
apply our formalism to an ancient theory in Sanskrit philosophy that reduces obligations
and prohibitions to instrumentality statements.

In Part III, we investigate explanations in the context of defeasible normative reasoning.
We call these deontic explanations. We develop a sequent-style proof-theoretic approach
tailored to generating explanatory arguments and show how these arguments can be
used in formal argumentation to create explanations. Furthermore, we develop a general,
nonmonotonic proof-theoretic formalism that incorporates argumentative concepts like
attack and defense, and extend it to defeasible normative reasoning.

vii






Kurzfassung

In dieser Diplomarbeit verwenden wir Logik, um unser Verstdndnis des normativen
Denkens!| zu erweitern, indem wir Agenten in unseren formalen Analysen eine zentrale
Position zuweisen. Normen sind untrennbar mit Agenten verbunden: Sie geben Griinde
fiir Handlungen und beeinflussen, wie wir unsere Welt gestalten. Aspekte von Agenten
werden jedoch oft abstrahiert, was zu vereinfachten Formalismen und unteruntersuchten
Themen fiihrt. Aulerdem haben jungste Entwicklungen in der Kiinstlichen Intelligenz
(KI) neue Herausforderungen fur die logische Untersuchung des normativen Denkens
geschaffen. Diese Arbeit behandelt mehrere dieser Themen. Die resultierende Forschung
ist interdisziplinidr und nutzt Methoden aus Philosophie, Logik, und KI.

Die Arbeit besteht aus drei Teilen: (I) Agentialitiat (Agency), (II) Handlung (Action),
und (III) Argumentation. Die ersten zwei Teilen gehoren zu den modallogische Ansétzen
der deontischen Logik und handeln vom Denken #ber Agenten im Kontext von Normen.
Im dritten Teil nutzen wir KI-Methoden—insbesondere formale Argumentation und
nichtmonotone Logik—um formales normatives Denken fiir Agenten zuganglicher zu
machen.

In Teil I untersuchen wir wie Verpflichtungen die Entscheidungen von Agenten beeinflussen.
Hierfiir ibernehmen wir die Logik von ‘Seeing To It That’ (STIT) und erweitern diese.
Wir untersuchen formal die Grenzen des contrary-to-duty (das heift “entgegen der
Pflicht”) SchlieBens in einem expliziten zeitlichen Kontext. Dariiber hinaus fiithren wir
eine umfassende logische Studie des Prinzips von Ought implies Can (das heifit “Sollen
impliziert Kénnen”) durch. Wir untersuchen zehn Interpretationen des Prinzips und die
Beziehung zu anderen Prinzipien des normativen Denkens.

In Teil IT untersuchen wir wie Verpflichtungen und Verbote die expliziten Handlungen
von Agenten férdern. Hierbei konzentrieren wir uns auf Urteile der Instrumentalitét,
die Handlungen als Instrumente zur Erreichung von Zielen ausdriicken. Wir entwickeln
eine deontische Handlungslogik, in der wir Verpflichtungen und Verbote in Bezug auf
Instrumente analysieren, vergleichen und bewerten. Auflerdem wenden wir unseren
Formalismus auf eine antike Theorie in der Sanskrit-Philosophie, die Verpflichtungen und
Verbote auf Urteile der Instrumentalitéit reduziert, an.

Im Kontext der Kurzfassung kann normatives Denken (normative reasoning) als das Ziehen von
Schlussfolgerungen auf Grundlage von Normen, Pflichten, Erlaubnissen und Verboten definiert werden.

ix



In Teil ITI untersuchen wir Erklarungen im Kontext des widerlegbaren normativen Denkens.
Wir nennen diese deontische Erkldrungen. Wir verwenden einen beweistheoretischen
Ansatz und entwickeln einen Sequenzenkalkiil, der darauf abzielt, erkldrende Argumente
zu generieren. Dariiber hinaus, demonstrieren wir wie diese Argumente in formaler
Argumentation verwendet werden kénnen, um Erkldrungen zu erstellen. Anschlieflend
entwickeln wir einen allgemeinen, nichtmonotonen beweistheoretischen Formalismus, der
argumentative Konzepte wie Attacke und Abwehr in der Sprache des Kalkiils integriert.
Wir wenden diesen Formalismus auf widerlegbares normatives Denken an.
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CHAPTER

Introduction

This thesis is about normative reasoning. Normative reasoning involves obligations,
prohibitions, permissions, rights, values, and norms. These notions are everywhere. They
make up laws, ethics, morals, business protocols, games, and social customs. What is
more, they are directed to us agents. They influence our everyday decision-making and
shape our lives. The obligation “promises must be kept” might cause us to hurry up
and be on time for an appointment. Whereas the prohibition “it is not allowed to drive
through a red light” affects whether or not we stop and wait for a traffic light to turn
green. Moreover, we often find ourselves in situations where various norms conflict. In
such cases, we must resolve these conflicts and decide which norms to give precedence.
For instance, I might violate my promise to be on time because I decide to wait for a
red light, whereas someone else may actually decide to do the opposite. Norms and
normative concepts motivate, guide, redirect, and inspire the way we behave and how we
form our world: they provide reasons to act.

In particular, this thesis provides a logical analysis of normative reasoning in the context
of agents. Agents make choices, perform actions, and exercise abilities. They reason
practically about attaining ends, plan short-term and long-term, and comply with and
violate norms. Furthermore, agents may not always understand why certain norms apply,
and obligations hold. Sometimes they may even disagree with the reasons given. We
address several of these aspects by dividing this thesis into three parts:

I. Agency: obligations as restricted by the choices and abilities of agents;
II. Action: the interaction between normative concepts, actions, and instruments;

III. Argumentation: explaining to agents why certain norms do or do not apply.
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Figure 1.1: The general structure of the thesis.

Each of these topics represents fundamental challenges and questions that belong to the
study of normative reasoning. In the following section, these topics are introduced and
discussed in detail.

1.1 Guiding Questions and Problems

Deontic Logic is the overarching term for the field of mathematical logic that deals with
normative concepts such as obligation, permission, prohibition, and norms. Since the
1950s, a wide range of deontic logics has been introduced. These logics are most often
modal logics (Blackburn et al., 2004), employing modal formulae such as Oy expressing
“it is obligatory that ¢” (where ¢ denotes a state of affairs). Such formulae represent
normative propositions according to some underlying set of norms, i.e., a normative code
(Hilpinen and McNamara, |2013). Norms are ‘rules’ and ‘laws’ (von Wright, 1963al), which
are conditional statements from which obligations, prohibitions, and permissions, are
inferred (Parent and van der Torre, 2013).

The term ‘deontic’ refers to the Greek word déov signifying “that which is binding”.
Following Kelsen (1991)), a norm’s object of binding is agentive behavior. The current
view includes the behavior of humans as well as of artificial agents (Floridi and Sanders,
2004). Even though most approaches in deontic logic abstract away this ‘object’, many
developments in the field have been guided by the conviction that agency and action are
pivotal components of normative reasoning (Castaneda, |1972; Meyer, |[1988; von Wright,
1968)). In fact, the prominence of agents and acts can be traced back to the introduction
of deontic logic by von Wright (1951}).

Research on the formal aspects of normative reasoning and agents is vast but various
problems remain un(satisfactorily)-addressed. What is more, novel problems arise due to
recent developments in Artificial Intelligence (AI) and Normative Multi-agent Systems



1.1. Guiding Questions and Problems

(NorMAS). We provide a systematic treatment of several challenges from the field by
dividing this thesis into three parts: agency, action, and argumentation.

The first two parts correspond to two well-developed approaches to including agents
in the logical analysis of normative reasoning (Broersen et al., 2013). The first part
focuses on agency and adopts the view that obligations (and other normative concepts)
reciprocally impact agents’ choices and what is brought about by them. The second
part concentrates on action as performed by agents. Here, we take obligations (and
other normative concepts) to promote and demote the actions agents can undertake to
attain their ends. The third part of this thesis deals with argumentation as a means of
characterizing and explaining conflicts between norms. The relatively new field of formal
argumentation studies arguments and their relations, and is particularly suitable for the
representation of conflicts.

In what follows, we elaborate on the three parts. Each part is divided into two chapters.
We introduce the preliminary background and pose our general research questions along
the way. In the remainder of this thesis, these questions are further specified and concrete
objectives are presented. The general structure of the thesis is presented in Figure [1.1.

1.1.1 Part I: Agency and Normative Reasoning

The first part of the thesis deals with agency, namely, the idea that agents are capable
of making choices and, consequently, influencing and changing the state of the world.
Agency, taken in this sense, adopts an indeterministic worldview (Hilpinen, 1997)): time
progresses but may evolve in various ways. The future is not fully determined, and
by choosing and acting, agents provide an essential contribution to delimiting possible
courses of events.!| Likewise, normative concepts such as obligations influence the choices
made by agents and, indirectly, the state of the world. For instance, the fact that I ought
to hand in my thesis next week may influence whether I go to a concert tonight.

Chapter 2. The interaction between time and obligation is one of the central research
themes in deontic logic (Broersen and Torre, 2011). Although most deontic formalisms
do not employ explicit temporal operators (Broersen et al., 2013), temporal deontic logics
have been thoroughly investigated (Broersen et al., 2004; Dignum and Kuiper, [1997; van
Eck, [1982; Prakken and Sergot, 1996; Thomason, |1981). Arguably the most prevailing
logic of agency covering choice, time, and deontic concepts is the logic of ‘Seeing To
It That’ (STIT, for short). It was initially developed by Belnap and Perloff (1988)) to
semantically model agents’ choices in indeterministic time. The STIT formalism is a
modal logic, with its primary modality [i] expressing that “agent i sees to it that” (some
state of affairs hold). Over the past decades, a vast body of research has been developed
around STIT. The formalism has seen a wide range of applications, covering, among

In Al the intelligent autonomous agent metaphor focuses primarily on the individual agent per-
spective, whereas for NorMAS, the focal point is that of multi-agent interaction (Verhagen et al., |2018]).
We deal predominantly with individual agency. We do not consider groups of agents (Herzig and
Schwarzentruber, [2008) or agents as creators, modifiers, and enforcers of norms (Boella et al., |2008)).
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others, legal reasoning (Armgardt et al., 2018; Lorini and Sartor, 2014; Lorini and Sartor,
2015)), epistemic reasoning (Broersen, 2008; Broersen, 2011a; Abarca and Broersen, 2019),
and reasoning for autonomous vehicles (Arkoudas et al., 2005; Shea-Blymyer and Abbas,
2021)).

Deontic extensions of the STIT framework were discussed since the beginning of STIT
(Belnap and Perloff, [1988; Belnap, 1991; Bartha, 1993), but its first extensive investigation
was provided by Horty (2001). In particular, Horty argues that temporal settings
provide good reasons for adopting more refined notions of agentive and conditional
obligations. These observations lead Horty to develop his influential deontic theory of
dominance act utilitarianism in STIT. However, these observations are grounded in the
interaction between deontic modalities and the implicit underlying semantic framework
of indeterministic time. Surprisingly, a corresponding logic of explicit temporal deontic
reasoning in STIT has not yet been developed. We set out to do this. The first research
question pursued in this thesis is phrased accordingly:

Research question 1. How can we model reasoning about obligation and choice in
an explicitly indeterministic temporal setting? What are the logical and philosophical
consequences of such a model for normative reasoning in the context of STIT ?

The first step towards answering the above questions is the development of a Tem-
poral Deontic STIT logic. Although the semantic interpretation of indeterministic
time—represented through branching-time frames (Prior, 1967; Thomason, 1981))—was
present from the outset in STIT (Belnap and Perloff, 1988), the first sound and complete
axiomatization of temporal STIT logic with branching-time frames was provided only
a decade ago by Lorini (2013).? Likewise, the first technical results concerning Horty’s
deontic STIT logic were obtained by Murakami (2005), who proved the proposed theory
of dominance ought sound, complete, and decidable. As a consequence of addressing
the above research question, we fill a longstanding literature gap by providing the first
sound and complete axiomatization of temporal deontic STIT logic.?| What is more, the
obtained framework enables us to analyze the logical consequences of normative reasoning
in an explicit temporal setting. In particular, it enables us to reassess some of Horty’s
(2001) observations formally.

Chapter 3. The choices that agents make depend on their abilities. Obligations
and prohibitions often depend on the abilities of agents too. In fact, one of the most
ubiquitous principles governing normative codes and ethical systems is the metaethical
principle called Ought implies Can (OiC). Intuitively, the principle states that “each
obligation presupposes a possibility of fulfilling it” (Hintikka, 1970, p.83). OiC has a

2Gee also (Armgardt et al., |2018; Broersen et al., 2006; Broersen, 2008; van Berkel and Lyon, 2019b;
Ciuni and Lorini, [2018} Wansing, [2006)) for other temporal characterizations of STIT.

3 Alternative deontic temporal STIT logics are given by Broersen (2008) and Lorini (2013). Both take
deontic concepts as defined by using violation constants in the spirit of Anderson (1958)) (the former uses
the implicitly temporal XSTIT choice operator). See page 8| for an introduction to Anderson’s approach.



1.1. Guiding Questions and Problems

long history within philosophy and has been traced back to Aristotle (The Nicomachean
FEthics, translated by Ameriks and Clarke, 2000), ancient Roman law (Vranas, 2007, and
Immanuel Kant (Critique of Pure Reason, translated by Guyer and Wood, 1998). Over
the past decades, OiC became a topic of investigation in its own right (Copp, [2017; Kohl,
2015; McConnell, 1989 Stocker, 1971). The result is a vast body of literature on the
topic containing a variety of interpretations of the principle (van Ackeren and Kiihler,
2015; Vranas, 2007). OiC is not uncontroversial and, despite its importance, there is no
clear consensus on its interpretation, let alone its implications. Determining the right
interpretation of OiC is crucial for normative systems that adopt it since it influences
the degree to which an agent can be burdened with and relieved from duties (Dahl, |1974;
McConnell, |1989). For instance, can I be obliged to take my bike to work this morning if
my bike was stolen? Moreover, since OiC is part of various ethical and (ancient) legal
systems, it becomes all the more important to understand OiC and its various readings
better. Formal models provide an effective way of increasing our knowledge in this
respect.

Indeed, in one way or another, OiC is already a principle of most deontic logics (Hilpinen
and McNamara, 2013). What is more, OiC is said to be one of those deontic logic
properties commonly taken as ‘undisputed’ in the field (van der Torre, [1997). Surprisingly,
there is a severe discrepancy between the philosophical and logical approaches to OiC. For
instance, in philosophy, the principle is predominantly taken as agentive: “what ought
to be done, can be done”; cf. (van Ackeren and Kiihler, [2015). Nonetheless, in deontic
logic, the principle is commonly taken as impersonal: “what ought to be, is possible”;
cf. (Hilpinen and McNamara, 2013)). Thus, there is a significant gap between the formal
treatment of OiC and its philosophical counterpart that it aims to model. The second
research question concerns the formal analysis of Ought implies Can:

Research question 2. What are the logical relations between the various readings
of Ought implies Can encountered in philosophy? What are the consequences of these
readings for formal normative reasoning?

In answering these questions, we find that the level of abstraction adopted in most
deontic logics keeps us from capturing essential nuances and refinements necessary for
an adequate analysis of Ought implies Can. We address the above questions within the
formalism of deontic STIT and develop a class of deontic STIT logics with which we
analyze ten philosophical readings of OiC. Furthermore, we employ these logics to formally
investigate how other pivotal principles relate to OiC (see page |16 for an overview).
The primary motivation for adopting STIT is that STIT provides a formal language
conducive to modeling various refined agentive concepts, such as ‘ability’, ‘refrainability’,
and ‘deliberative choice’ (Belnap et al.,|[2001)). Alternative formalisms, in this respect, are
the logic of ability by Brown (1988) and the logic of ‘bringing it about that’ by Elgesem
(1997)). In contrast to these alternatives, the STIT formalism is highly modular, and
deontic extensions of STIT are well-developed (see research question 1).
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1.1.2 Part II: Action and Normative Reasoning

The second part of this thesis deals with the performance of actions in relation to
normative concepts such as obligation and prohibition. Whereas Part I deals with the
choices available to agents and the outcomes thereof, Part II treats explicit actions as
first-class citizens. Here too, we take action to assume indeterministic time at its base:
at each given moment in time, an agent can perform various actions which may or may
not ensure an envisioned outcome. This view takes every action to be associated with
a change, namely, a transition between two states (von Wright, |1963a; Hilpinen, [1997)).
It supports the decision to consider actions as syntactically different from propositions
describing states of affairs. A common approach to upholding this distinction is by using
modalities for actions, such as in Propositional Dynamic Logic (PDL, for short), where
an action modality [0] is interpreted as “the performance of action 0 ensures that” (some
state of affairs holds) (Aqvist, 1974; Fischer and Ladner, [1979).% Such logics are also
referred to as dynamic action logics. The formalism was first adapted to the context of
normative reasoning by Meyer (1988) and continues to receive attention to the present
day, e.g., see (Giordani and Canavotto, 2016; Giordani and Pascucci, |2022; Hughes et al.,
2007).

Chapter 4. Normative codes prescribe (or prohibit, for that matter) certain states
of affairs and the performance of particular actions. Instrumentality statements—or
means-end relations—fulfill an essential role in this respect. They describe how actions
serve as instruments (means) for the attainment of desired outcomes (ends) (Condoravdi
and Lauer, 2016, Hughes et al., 2007; von Wright, [1972b). These statements are central
to practical reasoning and deliberation and guide an agent towards achieving her goals
(Bratman, 1981; Hare, 1971 von Wright, 1972a)). Furthermore, means-end reasoning
plays a central role in Belief-Desire-Intention (BDI) logics (Rao and Georgeff, |1995|) and
related multi-agent systems (Dastani, 2008]), where means are considered as plans that
stipulate a sequence of (sub)actions needed to attain a given goal (Rao and Georgeft,
1998)). Norms play an important role in this respect: they can prescribe or forbid the
attainment of certain ends on the one hand and the performance of particular actions
on the other. In deontic logic, this twofold role assigned to norms is well-studied and,
in the case of obligations, it is referred to as the dichotomy between ought-to-be and
ought-to-do (Castaneda, 1972). The dichotomy is an important challenge for deontic
logic and NorMAS, where the main question is whether the latter can be reduced to the
former (Pigozzi and van der Torre, 2018)).

There is, however, another role that norms can play in relation to instrumentality
statements, and that is when such statements form the content of obligations and
prohibitions. To see this, consider the following example: “It is prohibited to use
nonpublic information as an instrument to acquire financial profit on the stock market”.
This prohibition is known as the law on ‘insider trading’. Notice that it is neither

4St. Anselm (1033 — 1109) is said to be the first to investigate the logical structure of action (Segerberg,
1992)). Hilpinen (1997)) provides a detailed history of action logic.
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prohibited to use nonpublic information nor is it prohibited to acquire financial profit
on the stock market. Only as a means to attain financial profit, using such information
is forbidden. Prohibitions of the form expressed above articulate which actions may
not be employed as instruments for achieving particular goals. We call obligations and
prohibitions belonging to this category norms of instrumentality. Despite the ubiquity of
normative constraints on instrumentality in legal, social, and ethical systems—think of
protocols, rules of games, and fairness constraints—an investigation of their philosophical
and logical ramifications in logic is absent. This thesis sets out to fill this knowledge gap,
providing the foundations for formal reasoning with norms of instrumentality.

Research question 3. How can we formally represent obligations and prohibitions
about instrumentality statements? Moreover, how do they relate to the dichotomy between
ought-to-be and ought-to-do statements?

We address these questions by providing a modal deontic action logic based on Wright’s
theory of agency and instruments (1963b,1972b). Our approach deviates from the
traditional approach to dynamic action logic. Namely, we propose a reduction of action
modalities to alethic formulae containing action constants functioning as witnesses,
i.e., “action J is performed by agent ¢ when the next moment witnesses the successful
performance of § by agent :”. The use of action witnesses as constants preserves the
critical view of actions as distinct, first-class citizens in the formal language. The resulting
language accommodates formalizations of various notions of instrumentality. We point
out that this thesis is not concerned with instrumentality in planning and BDI logics
(Meyer et al., 2015). Instead, we investigate norms about instrumentality relations and
the logical properties of the obligations and prohibitions that result from them.

Chapter 5. As an application of instrumentality in the context of normative reasoning,
we investigate the deontic theory of the south Asian Sanskrit philosopher Mandana
misra (8CE), Mandana, for short (Freschi, |2010). Mandana belongs to the school of
Mimamsa, which is one of the most important schools of Indian philosophy with a long
and rich history of investigating normative reasoning (Ciabattoni et al., 2015). The
school—active for over two millennia—focuses on the exegesis and systematization of
the prescriptive parts of the Vedas, the sacred texts of what is now called Hinduism.
Mimamsa authors invested much effort in rationally interpreting Vedic commands and
resolving conflicts. The result is a vast body of rigorously structured theories of normative
reasoning. Mandana’s deontic theory is unique because it contains a deontic reduction:
i.e., a uniform reduction of all Vedic commands to purely descriptive statements about
actions instrumental to desirable and undesirable outcomes. For Mandana, a command
such as “If one desires rain, one should perform the Kariri ritual” is reduced to the
descriptive statement “The Kariri is an instrument for attaining rain”.

Due to their highly systematic nature, Mimamsa theories continue to be important
to numerous fields, including, among others, Indian jurisprudence (McCrea, 2010).
However, various Mimamsa doctrines are still unexplored or misunderstood despite
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their undeniable importance. In particular, how Mandana’s deontic reduction relates to
normative reasoning principles prevailing in the common Mimamsa tradition remains to
be determined. Logic provides an effective formal tool for a rigorous analysis of these
doctrines (Ciabattoni et al., 2015; Freschi et al., 2017)). In fact, there are some striking
similarities between Mandana’s reduction and what is known as Anderson’s reduction
(Anderson, [1958) in deontic logic. An Andersonian reduction reduces deontic statements
of the form “It is obligatory to stop for a red light” to statements of the form “Not
stopping for a red light necessary leads to a violation” (Anderson and Moore, |1957;
Castanieda, 1972)). Deontic action logics that adopt the Andersonian reduction deal
considerably well with challenging benchmark examples from the literature (Meyer, 1988).
Such examples are referred to as deontic puzzles or paradoxes (Hilpinen and McNamara,
2013) and are discussed on page 13. Accordingly, we investigate the following questions:

Research question 4. How can we formalize Mandana’s deontic theory, and how does
the theory relate to the common Mimamsa tradition? How does the resulting logic deal
with contemporary deontic paradoxes?

To address the above questions, we adopt the formal language developed in Chapter 4
and tailor the corresponding logic to Mandana’s theory of normative reasoning. The
purpose of this Sanskrit application is twofold: First, we show that logic can deepen our
understanding of Mandana’s deontic reduction and its position in the Mimamsa tradition.
Second, we formalize Mandana’s theory to demonstrate the advantages of incorporating
instrumentality relations in the formal analysis of normative reasoning, e.g., in relation
to dealing with deontic paradoxes.

1.1.3 Part III: Argumentation and Normative Reasoning

The first two parts of this thesis belong to the modal logic tradition in deontic logic.
In contrast, Part III employs Al methods from the field of formal argumentation and
defeasible reasoning to address the novel challenge of generating explanations in the
context of normative reasoning. Some preliminaries are required.

Defeasibility. First, Part I1I deals with defeasible normative reasoning. We reason
defeasibly when we draw conclusions due to the absence of information to the contrary
(Reiter, [1980), when our reasoning is rationally compelling but not necessarily deductively
valid (Koons, 2022), or when we jump to conclusions on the basis of normality, typicality,
and probability (Strafler,|[2014)). In all these readings, the premises justify the conclusion
even though additional information may force one to retract the conclusion later on
(Pollock, [1987)). Most of our daily life reasoning is defeasible (Toulmin, 1958) and, due to
the presence of conflicts, violations, exceptions, and priorities, normative reasoning is
inherently defeasible too (Nute, |1997)). Formal systems of defeasible reasoning emerged in
the 1980s due to rapid developments in AI° and logical systems of defeasible normative

®In particular, see the seminal Special Issue on Non-Monotonic Logic (Bobrow, 1980) of the Artificial
Intelligence journal. For a historic overview, we refer to the work of Koons (2022).
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reasoning were introduced soon after (Horty, 1997; Makinson and van der Torre, 2001}
Governatori and Rotolo, [2006). The central characteristic of formalisms of defeasible
reasoning is that they are nonmonotonic. That is, they do not satisfy the property of
monotonicity, which ensures that inference of a conclusion from a set of premises is robust
under expansions of those premises. In other words, nonmonotonic formalisms allow for
the retraction of a conclusion in the light of additional information (Strafler, [2014)).

Argumentation. Formal argumentation provides a uniform theory of nonmonotonic
reasoning. Namely, many nonmonotonic logics can be represented in formal argumentation
yielding the same inference relation as the characterized logic. See the work of Arieli
et al. (2021) and StraBer (2014) for an overview of these results.® The central concept of
this field is that of an instantiated argumentation framework, introduced by Dung (1995).
It consists of a set of arguments—where arguments comprise a claim and a collection of
reasons in support of it—together with an attack relation that defines conflicts between
these arguments. Furthermore, semantic extensions are identified as sets of justified
arguments collectively defendable against counterarguments. The idea of defeasibility is
then captured in terms of counterarguments attacking an initial argument. For instance,
I may argue that Franz can sing because Franz is a bird. An argument I may need to
retract after you counterargue that Franz is an ostrich, and ostriches cannot sing.

Chapter 6. By providing argumentative characterizations of nonmonotonic deontic
logics, we can harness existing methods from the field of formal argumentation and
apply them to the context of normative reasoning. The most promising and well-studied
formalisms in this respect is that of Input/Output logic (I/O logic, for short) (Makinson
and van der Torre, 2001). In brief, I/O logics model normative systems that stipulate
how to contextually detach obligations and permissions from a normative code (Parent
and van der Torre, [2013)). In particular, nonmonotonic I/O logics (Makinson and van
der Torre, [2001; Parent, |2011)) have been employed to defeasibly reason with deontic
conflicts, norm violations, and exceptions. Some first results concerning argumentative
characterizations of normative reasoning and the I/O formalism have been obtained
(StraBer and Arieli, 2015; Liao et al., 2018; StraBer and Pardo, 2021))/| However, much
work needs to be done. For instance, these approaches consider only fragments of the
standard 1/0 systems, employing languages restricted to literals. What is more, these
approaches are not suitable for explanatory purposes. For instance, Liao et al. (2018) and
StraBer and Pardo (2021) take arguments to consist only of norms and not of inferences,

SPrakken (2018) identifies two views on formal argumentation: argumentation as inference and
argumentation as dialogue. We adopt the view of argumentation as inference. The literature on formal
dialogues is vast: ranging from inquiry, information-seeking, and persuasion dialogues of argumentation,
to dialogues of practical deliberation (Black and Hunter, 2007; McBurney and Parsons, 2009). A number
of these works provide for dialogical generalizations of argumentation as inference, where two agents
discuss the acceptability of a given argument, e.g., (Prakken, [2005)).

"See the work of Dong et al. (2020) and Governatori et al. (2018) for argumentative characterizations
of other deontic logics.
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and for Strafler and Arieli (2015), arguments may contain irrelevant information. Part
III continues this research program.

Research question 5. How can we provide a modular logical formalism that yields
argumentative characterizations of a large class of nonmonotonic Input/Output logics?

Once such a characterization is obtained, we can start applying existing methods from
formal argumentation to I/O reasoning. We are interested in one such application:
explanations. The use of formal argumentation for explanatory purposes is promising
and the field is rapidly expanding (Borg and Bex, [2021; Cyras et al., 2021)).

In the context of agents and normative reasoning, explanations are critically important.
In order to motivate compliant behavior, an agent must understand why she is required
to behave in a specific way (particularly if she disagrees with her alleged duty). In
this respect, it does not suffice for the agent to know that an obligation holds: she
must know why it holds. Especially in view of normative conflicts, answers to such
why questions become crucial. Consider the question “why am I permitted to take over
on the left, despite my obligation to drive on the right?”. A satisfactory answer not
only explains that I am permitted but also why the other obligation does not hold. In
the above example, the permission can be an exception to the obligation, thus making
the latter inapplicable in the context of taking over other vehicles. We call answers to
such questions deontic explanations®. Such explanations not only improve an agent’s
understanding of norms but also provide reasons that motivate the agent’s appropriate
conduct. Most deontic logics only show that some obligation holds, and deontic logic has
not yet been investigated with the aim of generating explanations. In fact, explaining
normative reasoning is identified by Peirera et al. (2017)) as one of the three challenges
for formal argumentation approaches to NorMAS.

Research question 6. How can we accommodate deontic explanations in the developed
arqumentative characterizations of the various Input/Output logics?

Enhancing the explainability of I/O reasoning is an attempt to optimize the existing
expressivity of the I/O formalism. We can think of research question 5 as laying the
foundation for answering research question 6. We address research questions 5 and
6 by developing sequent-style proof calculi that generate explanatory I1/O arguments.
The sequent calculus formalism—originating in the work of Gentzen (1934)—defines
proof systems in terms of sets of rules. One of the principal characteristics of sequent
systems (compared to Hilbert-style axiomatic proof systems) is the rule-based approach
to constructing proofs as trees: the leaves of a tree are either trivial logical truths or
assumptions, branches are the result of rule applications, and the tree’s root is the
conclusion (Negri et al., 2008).°] Over the past decades, the sequent framework has been

8The term was suggested by Agata Ciabattoni, Christian Straer, and Leon van der Torre.
9Sequent calculi can be shown to possess the property of analyticity, which expresses that any
derivable formula is derivable with a proof solely consisting of subformulae of the formula in question.
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extended to cover a wide range of logics and formalisms, including modal logics (Negri,
2005). We are primarily interested in developing classes of sequent systems that generate
logical arguments that show a strong correspondence with formal argumentation, e.g.,
see the work of Arieli and Strafier (2015).

Chapter 7. One of the main contributions of Chapter 6|is the development of a class
of sequent-style proof systems characterizing monotonic normative reasoning in the 1/O
formalism. The main technical result of that chapter is that a large class of nonmonotonic
I/0 logics can be argumentatively characterized through argumentation frameworks
instantiated with arguments generated by these proof systems. An immediate question
is whether the developed proof systems can be modularly extended with rules that
directly capture defeasible normative reasoning. In Chapter |7, we address this question
by pursuing a more general aim. For this, we make use of the following observation:
An essential feature of defeasible reasoning (and nonmonotonic logics) is that previous
inferences can be retracted in the light of novel information. To illustrate, one may find
that an initial obligation “you ought to drive on the right side of the road”, must be
revised in the context of an exceptional circumstance, e.g., when overtaking another
vehicle. Thus, we say, in the context of defeasible reasoning, the status of a formula as a
logical conclusion may have to be revised (several times). The research question pursued
in this final chapter is formulated accordingly:

Research question 7. How can we integrate status revision considerations of defeasible
reasoning into the object level of sequent-style proof systems? Can we show these proof
systems to yield a nonmonotonic inference relation?

In formal argumentation, the process of revision is intuitively represented in terms of
attack and defense. Our primary objective is to integrate the central concepts of revision,
attack, and defense into a proof-theoretic approach to nonmonotonic logic. The expression
of attack and defeat in sequent-style proof systems has been extensively investigated, e.g.,
by Arieli and Straler (2015; 2019). The main difference with our objective is that existing
approaches leave both revision and nonmonotonic inference for the meta-analysis of the
proof system. We set out to incorporate these features on the level of the proof. The
result is a novel proof-theoretic approach for nonmonotonic reasoning with conflicting
information in which revision procedures are fully integrated on the object level of proofs.
We will demonstrate that nonmonotonic inference in our calculi strongly relates to various
types of inference in formal argumentation. Returning to our initial aim, we will leverage
these results to enhance the calculi from Chapter |6/ to obtain a class of nonmonotonic
proof systems for normative reasoning. A direct advantage of the approach is that we can
express normative conflicts in the object language of proofs by employing the integrated
notions of attack and defense.

That is, one can construct proofs by merely decomposing a formula, making it an effective tool for proof
search. Analyticity is also useful for determining other properties, such as consistency of a logic.

11
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Situating the Thesis

The logical analysis of normative reasoning is an interdisciplinary research field. The
results of this thesis are specifically relevant to philosophical logic and Knowledge
Representation and Reasoning (KR). As a subfield of philosophy and logic, philosophical
logic deals with applying logical methods to problems in philosophy. The main aim is to
enhance our understanding of these problems through mathematical analysis. Think of
problems concerning properties of time, knowledge, and norms. The use of modal logic
is the predominant approach in this field. Parts T and IT contribute to this field. As a
subfield of AI, KR deals, among others, with the formal representation of knowledge
for reasoning tasks. We find various modifications of philosophical logics employed in
the context of KR. Think of temporal, epistemic, and deontic logics. In particular, the
I/0 formalism is highly suitable for defeasible normative reasoning tasks, representing
normative systems as knowledge bases. Part III primarily contributes to KR.

1.2 Methodology

The field of deontic logic is not characterized by a principal methodology and the
interdisciplinary research presented in this thesis involves methods from philosophy, logic,
and Al In this section, we reflect on various methods. Formal logics are, by definition,
abstractions and this implies that design decisions must be made. Such choices largely
depend on the reasons of formalization. In general, we can distinguish between theoretical
and practical reasons. This thesis deals with both.

Concerning theoretical reasons, formal models provide mathematically precise means—i.e.,
analytic tools—for enhancing our understanding of concepts and reasoning with concepts.
Formalization has the unique advantage of employing mathematical methods for evaluat-
ing such models with respect to, for instance, a set of formally specified properties the
model should ideally satisfy (cf. page |16 below). Furthermore, mathematically precise
languages facilitate the comparison of various logics modeling the same (or similar)
phenomena. Part I and II involve such theoretical reasons.

Practical reasons are concerned with (defeasible) reasoning tasks, computability, ex-
plainability, and implementations. For instance, logics of normative reasoning can be
harnessed for reasoning tasks that deal with conflicts, planning, and compliance checking.
Another prominent method for practically assessing a developed logic is by determining
its computational complexity,'’| Moreover, recent developments in AI show that formal
models can be of specific use in generating explanations. Part III addresses practical
reasons concerned with defeasible reasoning, conflict resolution, and explanation.

When developing a formal logic, the following two central questions must be addressed:

1. Which formalism should be employed in developing a formal system?

10Complexity considerations and implementation fall outside the scope of this thesis.
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2. How can we assess the correctness or suitableness of a formal system with respect
to the phenomenon it intends to model?

The above questions are strongly connected. The first question relates to the various
types of formalisms available: For instance, one may adopt a propositional or a first-
order language, a classical or an intuitionistic base, a modal approach, a nonmonotonic
approach, and so on. Additionally, one may provide different semantic and proof-theoretic
characterizations of the same logic. The choices made in this respect strongly depend on
determining the right depth of abstraction. We address these considerations throughout
this thesis in the respective chapters.

The second question concerns the evaluation of the obtained formalism. In the remainder
of this section, we further elaborate on this question and discuss three methods often em-
ployed for assessing deontic logics: these concern deontic puzzles, metaethical principles,
and philosophical foundations. We frequently refer to these methods throughout the rest
of this thesis.

1.2.1 Examples and Deontic Puzzles

As in many other fields—such as formal argumentation (Caminada, [2004)), linguistics
(Condoravdi and Lauer, 2016 Kratzer, 1981), and ethics (Sverdlik, [1985)—examples
and counterexamples play a central role for developments in deontic logic. Often, such
examples are given in natural language and appeal to some common intuition. A
benchmark example is a quintessential example that a formalism should be able to deal
with. Failing to address such an example correctly does not necessarily imply refutation
of the formalism at hand but, at minimum, forces one to reflect on whether to revise the
formalism or whether the model constitutes an exception to the example.

The most prominent benchmark examples in deontic logic are deontic puzzles or deontic
paradozes. They are the driving force for defining and refining deontic systems (Hilpinen
and McNamara, 2013). They highlight typical properties of normative reasoning and
usually consist of the (un)derivability of certain formulae, counterintuitive to a given
common-sense reading (van der Torre, [1997). We follow the suggestion of Hilpinen and
McNamara (2013) and adopt the overarching term puzzles to denote these challenges.
We distinguish between two types of puzzles: The first type emphasizes challenges of
conditional obligations. The second type concerns unintuitive consequences of the logical
properties of deontic systems. In various chapters of this thesis, we assess the developed
formalisms in light of such puzzles. Here, we briefly recapitulate some of the most
prominent ones and refer to Hilpinen and McNamara (2013)) for an extensive overview.'!

Remark 1.1. Most of the problems indicated by the paradozes pertain to Standard
Deontic Logic (SDL), one of the oldest systems in deontic logic, e.g., see (Hilpinen and

"This thesis investigates obligations, prohibitions, and norms. It does not deal with the study of
permission, which can be taken as a proper subfield of deontic logic (Hansson, 2013). The study of
permission comes with its own set of deontic puzzles (Hilpinen and McNamara, 2013).

13
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MecNamara, |2015). The language of SDL consists of the propositional connectives for
negation (—), disjunction (V), conjunction (A), and material implication (— ), together
with the monadic modality O denoting “it is obligatory that” (some proposition holds).
SDL is defined as the normal modal logic KD, containing the deontic consistency axiom
—(Op A O=p), often referred to as the D-aziom (Chellas, |1980). To facilitate discussion,
some of the puzzles considered in this section contain, besides their natural language form,
a formal representation in SDL.

Puzzles of Conditional Obligations. Of all the challenges of conditional norms,
contrary-to-duty (CTD) reasoning yields the most notorious challenge of them all (van der
Torre, [1997; van der Torre and Tan, [1998)). CTD reasoning deals with those obligations
that hold whenever a violation ensues. There are many different CTD puzzles. Here, it
suffices to discuss the original CTD paradox proposed by Chisholm (1963). The paradox
pinpoints problems of conditional obligations and (deontic) detachment (Parent and van
der Torre, [2017). It consists of the following four sentences:

(C1) Billy ought to go to the assistance of her neighbors.

(C2) If Billy goes to the assistance of her neighbors, she ought to tell them she is
coming.

(C3) If Billy does not go to the assistance of her neighbors, she ought not to tell them
that she is coming.

(C4) Billy is not going to the assistance of her neighbors.

The scenario expresses a CTD situation: (C1)|is referred to as the unconditional initial
obligation, |(C2) is a compliant-with-duty obligation expressing an obligation conditional
on the fulfillment of the initial obligation; and (C3) is a contrary-to-duty obligation
expressing what ought to be in case a violation occurs. The last premise |(C4)| tells us
that the agent is in a violation state contrary to her initial obligation. Following Hilpinen
and McNamara (2013), “it is not at all as easy as it might seem to faithfully represent
scenarios like those [...] and it proved to be a real shortcoming of the standard systems”
(p-83) such as Standard Deontic Logic. The introduction of the paradox marks a turning
point in deontic logic, initiating a thorough investigation of conditional obligations and
the concept of violation.'? Hilpinen and McNamara (2013) and Prakken and Sergot
(1996) provide a (critical) overview of various solutions to the paradox. In Chapter 2, we
discuss temporal CTD reasoning. In Chapter 5, we discuss an atemporal CTD scenario—
i.e., the Gentle Murder Paradox (Forrester, [1984)—using an action-based deontic logic.

12This thesis treats obligations as monadic and defined conditional modalities. We do not investigate
primitive dyadic operators. A dyadic obligation O(p /1) expresses that “in the context 1, it is obligatory
that ¢”. Its antecedent enables one to single out what is obligatory in specific contexts (Parent, [2021]).
For this reason, dyadic deontic logics are suitable for reasoning about violation contexts (Chisholm, [1963)
and differentiating between prima facie and all-things-considered obligations (Alchourrén, [1996).
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In Chapter 6, we discuss deontic explanations of CTD scenarios in the context of the
Input/Output formalism.

Puzzles of Logical Properties. One of the oldest deontic puzzles in the literature
is Ross’ Paradox (Ross, |1944). It consists in deriving from the obligation (R1) the
counterintuitive obligation expressed in |(R2):

(R1) It is obligatory that you mail the letter.

(R2) It is obligatory that you mail the letter or burn the letter.

In Standard Deontic Logic, the scenario is formalized as:

(r1) O(mail)

(r2) O(mail V burn)

The oddity of the puzzle is that (R1) implies the obligation |(R2) which can be fulfilled
by burning the letter—an act that violates the obligation in |(R1). As Hilpinen and
McNamara (2013) put it: “it remains odd to think I could plead partial mitigation in
failing to mail the letter by burning it instead with ‘Well, at least I fulfilled my obligation
to mail or burn it’ ” (p.63). In Standard Deontic Logic, |(r2) logically follows from (rl).
Most normal modal logics suffer from this paradox due to the normality of the obligation
modality (see Remark 1.1). A prominent solution to the paradox is to block the above
logical inference by adopting a non-normal modal interpretation of the deontic modalities
(Chellas, [1980)). In Chapters 3 and 5, we discuss Ross’ Paradox.

As indicated above, some puzzles may be solved by adopting a weaker—e.g., non-normal—
modal interpretation of the obligation modality O. However, there is a price to pay:
one may lose some intuitively desirable inferential power of the logic in question. The
Alternative Service Challenge (Van Fraassen, [1973)) highlights this. The challenge consists
in deriving from the following two commands:

(A1) You should fight in the army or perform alternative service.

(A2) You should not fight in the army.
The third command:
(A3) You should perform alternative service.

The inference of |(A3) from the premises |(Al) and |(A2)|is intuitively desirable. In fact, it
is valid in Standard Deontic Logic where the scenario is represented as follows:

15
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(al) O(fight V service)
(a2) O(—fight)

(a3) O(service)

However, by adopting weaker modal logics—e.g., to solve other deontic puzzles—the
inference of (a3) from |(al) and |(a2) is often lost (Van Fraassen, (1973; Chellas, 1980;
Horty, [1994). The challenge lies in solving some of the deontic puzzles while preserving
certain desirable inferences. We discuss this challenge in the light of deontic dilemmas in
Chapters |3/ and |5.

1.2.2 Metaethical Principles

Another accepted way of assessing a developed logical systems is by comparing it
with lists of principles the logic must ideally satisfy. Such principles are sometimes
referred to as postulates or desiderata. Think of the rationality postulates in the field of
formal argumentation (Caminada and Amgoud, [2007)), the postulates of belief revision
(Alchourrén et al., [1985)), rationality principles for multi-agent systems (Dastani, [2008)),
and desirable properties of nonmonotonic inference (Arieli et al., 2022b; Strafer, [2014).

In normative reasoning, such criteria have been referred to as metaethical principles
(McConnell, [1985), which are principles that ideally any ethical theory should satisfy.
For instance, Ought implies Can is a metaethical principle. Metaethical principles can
pinpoint flaws or weaknesses of such theories, giving rise to modifications and discussions.

Similarly, metaethical principles are central to the formal analysis of normative reasoning.
We find applications of such principles since the early days of deontic logic (von Wright,
1951; Anderson and Moore, (1957). The ineptitude of particular formalisms to satisfy
metaethical principles led to new developments in deontic logic. For example, the
deficiency of normal modal logics to consistently represent deontic dilemmas led to the
introduction and analysis of non-normal modal deontic logics (Chellas, 1980). In this
thesis, we consider several such metaethical principles:

1. Ought implies Can: What an agent is obliged to do, an agent can do;

2. Deontic Consistency: Obligations are (individually) consistent;

3. Deontic Contingency: Obligations range over contingent states of affairs;

4. No deontic dilemmas: Obligations are jointly consistent;

5. Dilemmas are possible: Obligations can consistently require what is incompatible;

6. No Vacuous commands: Obligations are not about what trivially holds.
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The above principles are phrased in terms of obligations, but one may likewise think of
them in terms of prohibitions. It is not the case that failing to satisfy one of the above
principles means the refutation of the proposed formal system. Some deontic theories may
deliberately abstain from adopting some of these principles. Nevertheless, metaethical
principles invite one to reflect critically on specific aspects of the formalism.

In Chapter 3, we thoroughly discuss the above list of principles and investigate their
logical interdependencies. In Chapters 4| and |5, we investigate several such principles in
the context of action and instrumentality.

1.2.3 Philosophical Foundations

Several sources can be used in order to formalize a particular phenomenon. One of which
is philosophy. For deontic logics—but also agency logics and epistemic logics—one may
build a formal system upon existing philosophical theories on the respective topics. The
upshot of adopting this approach is that one’s formal system is grounded in a thoroughly
justified theory. Another advantage is that one can often lean on results that arose
through a rich and long history of critical debates on the topic at hand. Moreover, such
philosophical theories often provide a systematic study of principles, properties, and
(counter)examples against which the formal systems can be evaluated.

To illustrate this point, we mention some influential philosophical theories in logic. Von
Wright’s theory of agency as developed in (von Wright, [1963a; von Wright, 1972b)) has
proven to be a rich source for developments in the logic of agency and action, e.g.,
(Aqvist, 2002, Segerberg, 2002). From the viewpoint of philosophy of law, Hohfeld serves
as an essential source of inspiration (Glavani¢ovd and Pascucci, 2021; Kanger, 1972;
Markovich, [2020). Of recently, the ancient philosophical school of Mimamsa—dealing
with normative reasoning in the context of the Vedas—has been employed as a fruitful
source for developing deontic systems, e.g., (Ciabattoni et al.,|2015; Freschi et al., 2019}
Lellmann et al., [2021; van Berkel et al., 2022a)). The same applies to formal systems of
Talmudic reasoning, e.g., (Abraham et al., 2011) /'3

Several chapters in this thesis are grounded in philosophical theories: Chapter 3 is based
on an extensive survey of the philosophy of Ought implies Can, Chapter 4| is rooted
in von Wright’s philosophy of action and instrumentality, and Chapter 5| proposes a
formalization of the deontic theory of one of the central authors of the school of Mimamsa.
Concerning the latter, we provide a more detailed discussion of our methodology in
Chapter [5, which involves interpreting and translating Sanskrit texts.

13 Another commonly recognized source of formalization is intuition. In fact, new fields may often
largely depend on intuition as a driving forces behind developments due to the lack of a well-grounded
theory. We refer to the work of Caminada (2004)) for a discussion of intuition and the difference between
intuition of lay people (logica utens) and those that arise through systematic study (logica docens).
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1.3 Outline

Part I is devoted to analyzing normative reasoning in the context of agential choice.

In Chapter 2, we develop a sound and complete Temporal Deontic STIT logic (TDS). We
show how the proposed semantics of TDS can be truth-preservingly transformed into the
traditional deontic STIT semantics using utility functions. We demonstrate the limits
of the traditional approach by providing an incompleteness result for explicit temporal
contrary-to-duty reasoning in the context of deliberative agency.

Chapter |3 provides a comprehensive logical study of ten philosophical interpretations
of Ought implies Can (OiC). We modify the deontic STIT formalism of Chapter 2 and
develop a class of sound and complete deontic STIT logics (OS) axiomatizing these ten
OiC interpretations. We employ the resulting logics to provide a formal taxonomy of the
(in)dependencies of the various OiC readings. We then extend this class of STIT logics
with other metaethical and normative reasoning principles and determine their relation

to OiC.
Part II formally addresses instrumentality relations in the context of normative reasoning.

In Chapter 4, we develop a logic of action and norms (LAN) to reason about instrumentality
statements. We identify a ubiquitous yet previously unaddressed norm category called
norms of instrumentality, formalize it, and investigate its logical relations to other well-
known norm categories. Based on the work of von Wright, we discuss possible extensions
of LAN that model more refined instrumentality notions.

In Chapter |5, we provide an application of the logical language developed in Chapter 4
to Sanskrit philosophy. In particular, we formally analyze the deontic theory of the
Mimamsa philosopher Mandana, which reduces all commands to statements about actions
as instruments for (un)desirable results. We provide a sound and complete logic (LM)
capturing this reduction and use the logic to enhance our understanding of Mandana’s
theory. We show how the logic LM deals with well-known deontic paradoxes.

In Part III, we use methods from formal argumentation to address deontic explanations
and defeasible normative reasoning.

In Chapter [6, we introduce a modular proof theoretic formalism that accommodates
explanation by integrating meta-reasoning about the (in)applicability of norms into the
object language of its proofs. The resulting calculi are called Deontic Argumentation
Calculi (DAC). Using these calculi, we provide a sound and complete argumentative
characterization of the class of nonmonotonic constrained Input/Output logics. We discuss
the explanatory nature of our formalism by applying existing explanation methods from
the argumentation literature to our formalism.

In Chapter 7, we develop Annotated Calculi (AC), a highly modular class of proof systems
internalizing aspects of formal argumentation within the object language of its proofs.
We show the consequence relation of AC to be nonmonotonic and to strongly correspond
with the inference relation of formal argumentation. We extend the formalism to include
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defeasible normative reasoning. Namely, we incorporate the DAC formalism of Chapter |6
and show that a correspondence with formal argumentation is preserved.

Last, in Chapter |8, we conclude by giving an overview of the central contributions of this
thesis. We reflect on general conclusions that can be drawn from the conducted research
and discuss the most promising future research directions.

1.4 Publications

The chapters comprising Parts I-1II of this dissertation are extensions of published,
peer-reviewed articles. In each respective chapter, we explain in detail the differences
between these articles and the present work. Here, we briefly list the relevant publications.

Chapter 2

o Kees van Berkel and Tim Lyon (2019). “A Neutral Temporal Deontic STIT Logic”.
In: Logic, Rationality, and Interaction - 7th International Workshop (LORI 2019).

Chapter 3

o Kees van Berkel and Tim Lyon (2021). “The Varieties of Ought-Implies-Can and
Deontic STIT Logic”. In: Deontic Logic and Normative Systems - 15th International
Conference (DEON 2021).

Chapter 4

o Kees van Berkel, Tim Lyon, and Francesco Olivieri (2020). “A Decidable Multi-
agent Logic for Reasoning About Actions, Instruments, and Norms”. In: Logic and
Argumentation - Third International Conference (CLAR 2020).

o Kees van Berkel and Matteo Pascucci (2018). “Notions of instrumentality in agency

logic”. In: International Conference on Principles and Practice of Multi-Agent
Systems (PRIMA 2018).

Chapter 5

o Kees van Berkel, Agata Ciabattoni, Elisa Freschi, Francesca Gulisano, and Maya
Olszewski (2021). “The Gentle Murder Paradox in Sanskrit Philosophy”. In:
Deontic Logic and Normative Systems - 15th International Conference (DEON
2021).

o Kees van Berkel, Agata Ciabattoni, Elisa Freschi, Francesca Gulisano, and Maya
Olszewski (2022) “Deontic paradoxes in Mimamsa logics: there and back again”.
In: Journal of Logic, Language, and Information.'*

! This journal publication is an extended version of the preceding conference article.
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Chapter |6

o Kees van Berkel and Christian Strafiler (2022). “Reasoning With and About Norms
in Logical Argumentation”. In: Frontiers in Artificial Intelligence and Applications:
Computational Models of Argumen (COMMA 2022).

Chapter |7

o Ofer Arieli, Kees van Berkel, and Christian Strafler. “Annotated Sequent Calculi
for Paraconsistent Reasoning and Their Relations to Logical Argumentation”. In:
Main Track of the 31st International Joint Conference on Artificial Intelligence
(IJCAI 2022).
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CHAPTER

Time, Choice, and Obligation

This chapter deals with obligation and choice in an explicitly temporal setting. We focus
on the logic of ‘Seeing To It That’ (for short, STIT), a prominent formalism employing
modal logics to represent and analyze agentive choice in indeterministic time. Since
its beginning, STIT logic has been investigated in the light of deontic modalities, such
as obligations, prohibitions, and permissions. What is more, deontic STIT scenarios
have been extensively discussed against the background of temporal structures (Bartha,
1993; Belnap, [1991; Belnap et al., 2001; Horty and Belnap, [1995). Most notable is
Horty’s highly influential work ‘Agency and Deontic Logic’ (2001). Horty argues that the
temporal multi-agent setting provides good reasons for adopting a more refined notion
of obligation in STIT. The resulting obligation is called the dominance ought. Horty’s
arguments concern the interaction between deontic modalities and the implicit underlying
semantic framework of indeterministic time. Surprisingly, a logic of explicit temporal
deontic reasoning in STIT has not yet been developed.! In this chapter, we set out to do
this. Our intentions are twofold: we want to formally reassess some of the arguments
given by Horty and further our understanding of obligations in the context of time and
agency. The first objective is, thus, phrased:

Objective 1. Develop a sound and complete Temporal Deontic STIT logic.

We propose a sound and complete logic called Temporal Deontic STIT logic, referred to
as TDS,,. The logic is a synthesis of various systems in the literature: non-deontic basic
STIT logic (Belnap et al., 2001) extended with deontic modalities (Horty, [2001) and the
temporal characterization of STIT (Lorini, |2013). The latter faithfully represents the
implicitly temporal structures of the traditional STIT semantic: Branching Time frames
(BT) with Agentive Choice functions, for short, BT4+AC-frames. For a philosophical
discussion of BT4+AC frames, we refer to the work of Belnap and Perloff (1988).

!Broersen (2008) and Lorini (2013) provide temporal STIT logics in which obligations are defined
using violation constants (without providing corresponding axiomatizations).
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The semantics of Horty’s (2001) deontic STIT logic of dominance ought is based on
utility assignments. In the sequel, we call this the Utilitarian STIT tradition. Initially
formulated by Jeremy Bentham (1789/1996), the influential theory of utilitarianism has
promoted wutility calculation as a ground for ethical deliberation: e.g., act utilitarianism
classifies acts as morally right or wrong based on their comparative utility. For this
reason, utility-based approaches to formal normative reasoning are promising (Aqvist,
1969)). Unfortunately, each available utility function has its own (dis)advantages that give
rise to philosophical puzzles—several of them addressed by Horty (2001). To avoid such
problems, we provide an alternative semantic account of TDS,, by adopting relational
semantics.

Objective 2. Provide a modular characterization of Temporal Deontic STIT logic through
relational semantics, bypassing the use of utility functions.

An essential advantage of using relational semantics is its modularity. In our case, it facil-
itates a better understanding of the semantic properties of the involved deontic operators.
(Furthermore, a relational characterization facilitates the formalization of a wider variety
of alternative deontic properties. We demonstrate this in Chapter 3.) An immediate
question arising from the above objective is whether the relational characterization of
deontic STIT is equivalent to its utilitarian characterization.

Objective 3. Formally investigate the relation between Utilitarian STIT semantics and
Deontic STIT semantics.

In this chapter, we develop a translation that enables us to constructively transform the
relational STIT semantics into utilitarian STIT semantics—while preserving satisfiability—
thus recovering the traditional utilitarian approach developed by Horty (2001]).

Last, Horty (2001) extensively investigates various utility functions in the light of
branching time frames and provides good reasons for preferring certain utility functions
over others. However, the logical language used is atemporal, and Murakami (2005)
proved that the corresponding atemporal deontic STIT logic cannot logically differentiate
between the various types of utility assignments discussed by Horty. Furthermore, it
was left as an open question to investigate “how various operators for deontic notions
behave and interact in a temporal structure” (Murakami, 2005, p.5). Employing the
developed TDS logic, we formally reassess some of the observations made by Horty (2001)
concerning deontic STIT logic.

Objective 4. Investigate whether the temporal extension of deontic STIT has consequences
for the use of utility functions.

In particular, we are interested in whether there is a formal difference between utility
functions that restrict the assignment of utilities to single moments in time and those
that consider the overall utility of a complete branch of a branching time structure,
called a history. In this chapter, we argue that some utility functions—equivalent in



a non-temporal setting—mnot only differ in a temporal setting but cause substantial
problems with respect to contrary-to-duty (CTD) scenarios and deliberative agency.

Contributions. In this chapter, we address the above four objectives. We make four
main contributions. First, we fill a long-standing gap in the STIT literature by providing
a sound and weakly complete temporal deontic STIT logic. We do this by employing
relational semantics. In this respect, our approach extends the results by Balbiani et al.
(2008) by showing that (temporal) deontic STIT logics can likewise be characterized
without using the traditional BT4+AC frames.

Second, we prove several equivalence results between the two semantic approaches. We
provide a constructive transformation between models adopting relational semantics
and those using utility-based semantics. For instance, we observe that the language of
atemporal deontic STIT is not expressive enough to differentiate between binary utility
assignments and those grounded in the set of natural numbers.

Third, all of the above results hold for temporal deontic STIT logic and atemporal deontic
STIT logic. For the latter, we additionally prove that the logic is strongly sound and
complete.

Fourth, the increase of expressivity gained by extending deontic STIT with temporal
modalities provides interesting insights into the use of utility functions. Namely, we
demonstrate that certain utility functions, equivalent in an atemporal deontic STIT
setting, are no longer equivalent for its temporal extension. From a philosophical point
of view, we argue that two-valued utility assignments that assign utilities to complete
histories are unsuitable for deliberative agency and contrary-to-duty reasoning in temporal
settings. From a technical point of view, we prove that the logic TDS,, is incomplete for
temporal STIT frames adopting these two-valued utility functions.

Differences. The results presented in this chapter were first published in (van Berkel
and Lyon, 2019a)). Novel contributions are the following: We provide a different axioma-
tization of the obligation modality ®; and show (Lemma 2.12) that the resulting axioms
are equivalent to the axioms employed by Murakami (2005). We give the complete proofs
of all the results in (van Berkel and Lyon, |2019a) and show that the results extend to the
atemporal deontic STIT logic DS,,. Last, in (van Berkel and Lyon, [2019al), we informally
argued that certain utility functions ranging over histories cause problems in an explicit
temporal setting. Here, we make this formally precise by proving the incompleteness
of TDS,, with respect to temporal utilitarian STIT-frames employing two-valued utility
assignments ranging over complete histories.

Outline. In Section 2.1, we introduce the temporal deontic STIT logic TDS,, and its
atemporal subsystem DS,,. Thereafter, in Section [2.2, we prove soundness of both logics
and demonstrate that TDS,, is weakly complete and that DS,, is strongly complete. In
Section 2.3, we prove equivalence results between the relational semantics of TDS,, (and
DS,,) and the utilitarian STIT semantics. We then discuss the problem of employing
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two-valued utility functions in an explicitly temporal STIT setting and provide an
incompleteness result in Section [2.4. Last, we relate our work to the literature and point
out future work in Section [2.5.

2.1 Temporal Deontic STIT Logic

In this section, we introduce the Temporal Deontic STIT logic, referred to as TDS,,
(Objective 1). We provide a Hilbert-style axiomatization of TDS,, and a corresponding
semantic characterization using relational semantics (Objective 2). Due to the modularity
of our approach, we simultaneously introduce the atemporal Deontic STIT logic DS,, as a
proper subsystem of the former. We start with an informal discussion of the language
employed.

Indeterministic Time. Agency presupposes choice. Choice presupposes indeterministic
time. This is a notion of time in which the future is open—i.e., not fully determined—and
influenceable by the choices that agents make. A moment is then a point in time at
which agents exercise choices that affect the possible continuations of time. Although the
past of a given moment is uniquely determined by the course of events that led to that
moment, at that moment, several futures are still possible. In other words, one may think
of indeterminism as a branching time structure represented as a tree: the past is rooted in
a linear sequence of moments, whereas the future branches out. Given such a branching
time structure, each possible timeline of consecutive moments is called a history. In
the sequel, we use timeline and history interchangeably. In other words, a moment in a
branching time structure is a point in time where previously indistinguishable histories
split, possibly through the influence of agents. In order to refer to the past and the
future, we use the modal operators H and G, respectively. The former expresses that “it
has always been that” (some proposition holds) and the latter that “it will always be
that” (some proposition holds). Let P and F be the duals of H, respectively G (Prior,
1967)) expressing that “somewhere in the past” (some proposition holds), respectively
“somewhere in the future” (some proposition holds). We refer to the work of Belnap and
Perloff (1988)), Belnap et al. (2001), and Thomason (1984) for extensive discussions of
indeterminist time.

Agents. Choices are exercised by agents. We denote agents by numbers ¢ € N =
{1,2,3,...}. This chapter focuses on multi-agent settings that take agents as individuals.
Nature may also be considered an agent (von Wright, |1963a). We do not discuss choices
made by arbitrary groups of agents (Herzig and Schwarzentruber, [2008)). The only
exception is the grand coalition of agents, which is used to characterize the outcome of
all agents acting together (Lorini, 2013]).

Choices. Different choices may be available to different agents at different moments in
time. The characteristic feature of basic STIT logic is the use of an instantaneous choice
operator [i] for each agent i, which informally expresses that “agent i sees to it that”
(some proposition holds). The operator is instantaneous in the sense that choice refers to
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what an agent can directly see to at a given moment in time/?| In a multi-agent world, a
single agent cannot uniquely determine the future by acting. For instance, when I decide

to go to a concert, it may be that my friend joins me but also that she stays at home.

Nevertheless, that I see to it that I go to the concert excludes a future continuation of this
moment where I stayed at home. Hence, what an agent can do via exercising choice is to
constrain or limit the possible courses of events. In other words, STIT models agency in
indeterministic time under uncertainty of choice. We interpret the dual (i) of [i] as “agent
i sees possibly to it that” (some proposition holds). The position of “possibly” denotes
that the proposition can be a consequence of the agent’s choice (although this might not
be guaranteed through the choice alone). Last, the modal operator [Ag| represents that
“the grand coalition of agents sees to it that” (some proposition holds).

Settledness. At any given moment, there are states of affairs that cannot be altered by
any of the agents’ (joint) choices. Such states of affairs are settled true at the moment in
question. Basic STIT logic includes a settledness operator [J to refer to such states of
affairs. For instance, the formula [Jtuesday states that “at this moment, it is settled
true that it is Tuesday.” In basic STIT logic, this implies that no choice is available to
any of the agents to see to it that today is not Tuesday. In such cases, we sometimes say
that tuesday is realized independently of any of the agents’ choices. The dual operator
¢ expresses that some state of affairs is possible or realizable. The settledness operator

plays an essential role in characterizing the relations between different choices of agents.

For instance, {[i]concert expresses that agent ¢ has a choice to attend the concert.

Deliberative choices. The above language enables the construction of complex formulae
such as [i|concert A =[Jconcert which informally expresses that agent i sees to it that
she attends the concert although it is not settled true that she will attend. In fact, this
formula is an instance of the defined deliberative STIT operator, i.e., [i]%p := [i]o A O3
Deliberative choices capture the idea that whenever an agent sees to it that ¢, it is not
necessarily the case that ¢ (Horty and Belnap, [1995).

Obligations. Choices lead to different continuations of time, and obligations prescribe
certain choices over others. In the context of STIT, obligation is an agentive modality
®; for each agent i. Belnap and Perloff (1988]) propose the canonical reading of ®; as
“agent i is obligated to see to it that” (some proposition holds), whereas Horty (2001)
interprets ®; as “agent i ought to see to it that” (some proposition holds). We use both
interchangeably. These proposed readings include the agentive ‘see to it that’. Belnap
and Perloff (1988)) argue that ®; is only quasi-agentive since although it involves both an
agent and an agentive, the agent is tied to the normative (i.e., ought) and not to the
agentive (i.e., ‘see to it that’). To illustrate, the formula ®;concert is informally read

2The operator [i] is also referred to as the Chellas STIT modality (Belnap et al.,[2001). Alternative
non-instantaneous STIT operators are the achievement STIT referring to the past and alternative courses
of events (Belnap et al.,|2001), and the next STIT referring to future moments as the result of agential
choice (Broersen, [2011a).

3Xu (1998) provides a sound and complete characterization of the deliberative STIT operator taken
as a primitive modality. The idea to combine two modal operators in order to define a (non-normal)
deliberative choice operator was also adopted by Elgesem (1997)), Kanger (1972), and Pérn (1977, Ch.1).
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Figure 2.1: A graphical illustration of the single-moment scenario in Example 2.1.

as “agent ¢ ought to see to it that she attends the concert” (e.g., because she made a
promise). In Chapter 3, we argue that weaker interpretations of the ®; operator are
possible and even desirable.

Example 2.1 (A single-moment two-agent example). Consider a two-agent scenario.
Let John and Paul be the two agents, i.e., Agents = {j,p}. Suppose John and Paul got
into a fight, and now each of them is faced with two choices: they can each try to work it
out, or they can decide not to work it out. Let try j,try_p, and work it_out stand
for “John tries to work it out”, “Paul tries to work it out”, and “it works out”. The
choices are formalized as follows:

Oljlery_3 and Olj]-try_j;

Olpltry_p and O[p|-try_p.

Furthermore, assume it is possible that John and Paul work it out, i.e., Owork it _out.
We stipulate that this can only be the case if both agents try to do so, i.e., O(work__it_out
— ([J]try_jAlpltry_p)). Let the moment m consist of the four possible combinations of
the above choices. Following Balbiani et al. (2008), we interpret a moment as a collection
of worlds, where each world corresponds to a possible continuation of time determined
by the joint choices of the involved agents. Figure 2.1| gives a graphical representation
of the scenario. The moment m consists of four possible continuations wy,ws,ws, and
wy4. Both agents have two choices at m. The two choices of j limit the future to either
{wy, w3} or {wa, w4} and are graphically represented by ‘- - -’ lines. The two choices
of p restrict the future to either {wy,wa} or {ws,ws} and are graphically represented by
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‘e - " lines. Clearly, j and p can together see to it that they work it out by exercising

the choices {wy,ws} (i.e., [jltry_j) and {wi,wa} (i.e., [pltry_p), leading to the unique
continuation wy at which they work it out (i.e., work _it_out). The four vertical solid
lines ¢ " denote the four distinct histories (i.e., timelines) resulting from the four
possible combined choices of agents j and p. Figure |2.1 furthermore illustrates that
each agent can individually and deliberately guarantee that their fight is not resolved,
i.e., O[i|?=work it_out (for i € {j,p}), but only together they can work it out, i.e.,
O[Ag]work__it_out.

Last, suppose that, at minimum, John and Paul are under the obligation to try and work
it out, i.e., their obligations are @;try j and @ptry p. In Figure|2.1, the two choices
{wi,ws} (i.e., [jltry_j) and {w1,w2} (i.e., [p]try_p) are shaded to denote that they
are obligatory choices. In fact, we see that only if both agents comply with their duties
will they work it out. In FErample 2.2, we discuss an extended example that involves
temporal reasoning.

Two agency principles. To classify time as an agentive branching time structure, specific
properties must be met. Traditionally, the STIT formalism contains two such principles:
independence of agents (IoA, for short) and no choice between undivided histories (NCbUH,
for short). Both principles are accredited to Von Kutschera (1986; 1993). The IoA
principle stipulates that no agent can block another agent from exercising an available
choice. For instance, if I have the choice to attend a concert tonight, I can exercise this
choice irrespective of any of the choices made by the other agents. Hence, one may think
of IoA as a principle that characterizes choice as choice proper (in contrast to a defeasible
reading of choice). From a logical point of view, IoA ensures that any combination
of choices made by the agents is consistent. The NCbUH principle stipulates that if
two histories remain undivided at the next moment, no agent has a choice that realizes
one history but excludes the other. This principle ensures the temporal coherence of
choice. We refer to Belnap et al. (2001) for a philosophical and logical discussion of
these principles. The notion of the grand coalition of agents is formally employed to
characterize NCbUH (see Definition 2.2 below).*

We define the temporal deontic STIT language £ as the combined languages of atemporal
deontic STIT (Horty, 2001) and temporal non-deontic STIT (Lorini, 2013). We define
Eﬁ as the atemporal fragment of Efld. We use the subscript n to denote the number of
agents in the formalism.

Definition 2.1 (The Languages £!¢ and £%). Let Atoms = {p, q,7,...} be a denumerable
set of propositional atoms and let Agents = {1,2,...,n} be a finite set of agent labels.
The temporal deontic STIT language L is given by the following BNF grammar:

pu=plpleAe|DOp|lilp| ®i¢|[Agle | Go | Hp

4Additionally, one may adopt the limited choice principle (Belnap et al.,2001). The principle restricts
each agent to a maximum number of choices at each moment. We leave it to future work to extend the
logics of this chapter with the limited choice principle.
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where p € Atoms and i € Agents. The atemporal deontic STIT language L2 is defined as
the {[Agl, G, H}-free fragment of L2

In what follows, we use lowercase Roman letters p,q,r,... to denote propositional
variables and lowercase Greek letters ¢, 1,7, ... to denote arbitrary formulae of £/ and
L. We write Atoms(i) to denote the set of atoms occurring in a formula ¢. Furthermore,
we use upper case Greek letters A, ', ¥ to refer to arbitrary sets of £i4 (£4) formulae. We
adopt a classical propositional base logic for the logics TDS,, and DS,,. For that reason,
it suffices to take the connectives — and A as primitives expressing ‘not’, respectively
‘and’. The other logical connectives for ‘disjunction’, ‘material implication’, and ‘material
equivalence’ are defined as usual: ¢ V¢ := =(=p A ), ¢ = ¥ = —p V¢, and
o=19:=(p—Y)A (W — ). We define tautology and contradiction as T := p V —p,
respectively | := —T. Last, the dual operators are defined as (a)p := —[a]—p for
each pair ({a), [a]) € {(0,0), (), [i]), (€4, ®i), ((Ag), [Ag]), (F, G), (P,H)}. We adopt the

usual notational conventions concerning brackets.

2.1.1 Axiomatization of Temporal Deontic STIT logic

The Hilbert-style axiomatization of the temporal deontic STIT logic TDS,, is given in
Definition [2.2 below. We identify the atemporal deontic STIT logic DS,, as a proper
subsystem of TDS,,. The axiomatization of TDS,, combines the temporal non-deontic
STIT logic from Lorini (2013) with the deontic STIT logic from Murakami (2005). The
deontic axioms A10 and A13| of Definition 2.2 differ from those presented by Murakami
(2005) but in Section 2.3 we prove (Lemma (2.12) that the two axiomatizations are
equivalent. We refer to the work of Horty (2001) and Lorini (2013) for a more detailed
discussion of the axioms. Here, we discuss each axiom briefly.

All the modalities of the language are normal modal operators by virtue of the distribution
axioms A4, A1, /A9, A14, |A18, and A21, the rule R1 and for [i], ®;, and [Ag] the axioms
A7, A12, respectively A17. It can be straightforwardly checked that the latter three axiom
schemes, together with R1, imply necessitation for [i], ®;, and [Ag].

Concerning basic STIT, O, [i], and [Ag] are S5 operators by virtue of A2-A3, |A5-AG,
respectively A15{A16. The S5 characterization of these modalities ensures that [J refers to
moments, and that [i] and [Ag] refer to choices. We come back to these interpretations in
detail when we provide the corresponding semantics on page |33, Axiom A7| expresses that
whatever is settled true at a moment is also seen to by each agent at that moment. Phrased
differently, if it is settled true that ¢ holds at a given moment, then irrespective of the
choices made by any of the agents, ¢ holds. Axiom A8 corresponds to the independence
of agents principle, i.e., any combination of agents’ choices is jointly realizable. Last,
axiom |A17 captures the idea that all agents acting together implies the grand coalition
of agents acting.

Concerning the deontic axioms, A10 expresses the idea that obligations are settled at
the level of the moment. Namely, obligations express which continuations of the present
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moment are ideal for that agent. For that reason, obligations that hold at a given moment
do not depend on the choices made by any of the agents at that moment. Axiom A1l
represents the principle of Ought implies Can, which ensures that what an agent is obliged
to see to, the agent has the choice to see to (Chapter 3 is devoted to the analysis of Ought
implies Can in the context of STIT). Axiom |A12 is a bridge axiom stating that everything
which is settled true is also obligatory (consequently excluding obligations to bring about
states of affairs that cannot be realized). Last, Al3 expresses the quasi-agentive reading
of ®; that whenever an agent has an obligation concerning ¢, the agent ought to see to
it that ¢ holds (see Remark 2.1)).

Definition 2.2 (Axiomatization of TDS,, and DS,,). We define the Hilbert-Axiomatization
of TDS,, to be the following collection of axiom schemes and rules:

A0

RO.
Al.
A2.
A3.
Ad.
A5.
A6.
AT.
AS.
A9.
A10.
All.
Al12.

Al3.

R1

. All classical propositional tautologies;
From ¢ and ¢ — 1, infer ¢;

O(p = 9) = (Op = Oy);

Do — o5

Op — OOp;

[il(p = ) = ([t — [i]9);

il = @;

(t)o = [i](i)e;

D = lile;

/\iEAgents Oli]ps — <>(/\i€Agents [i]pi);
®i(p = ¥) = (Qip = QiY);

Qi = L Qi p;

®ip — Olile;

o — ®ip;

®ip — Qilile;

. From @, infer Oy;

Al4.
Al15.
A16.
Al7.
A18.
Al19.
A20.
A21.
A22.
A23.
A24.
A25.
A26.

R2.

R3.

[Agl(e = ¥) — ([Agle — [AglV);
[Agle — ¢;

(Ag)p — [Agl(Ag)e;
Algign[i]%‘ — [Ag] Ni<i<n $is
Glp = ¥) = (Gp — Gy);

Gy — GGy;

Gy — Fy;

H(¢ — ¢) = (Hp — Hy);

p — GPyp;

p — HFp;

FPy — Po V o V Fy;

PFy — Po VoV Fy;

FOp = (Ag)Fp;

From o, infer G and He;

From (O-p AO(Gp A Hp)) — ¢ with
p & Atoms(p), infer ;

where we have a copy of A4-ALS| for each i € Agents. The logic TDS,, is the smallest set
of formulae from L' closed under all instances of the axiom schemes and applications of
the inference rules RO-R3. Whenever ¢ € TDS,,, we say that ¢ € Efld is a TDS,,-theorem
and write FTps,, ©.

31



2.

TiME, CHOICE, AND OBLIGATION

32

We define the Hilbert-Axiomatization of DS,, to consist of the axiom schemes and rules
of the left column (above), i.e., axiom schemes AO-A13 (for each i € Agents) and the
rules RO-R1. The logic DS,, and DS, -theoremhood are defined as above.

Concerning the axiomatization of time, A18/A20 capture the common conception of
branching time as transitive and serial, i.e., G is a KD4 modality. Axioms A22| and A23
serve as the central axioms of minimal temporal logic and ensure that the past (i.e., H) is
the converse of the future (i.e., G), e.g., see the work of Thomason (1984). For instance,
A22 expresses that what is the case now, will always going to be somewhere in the past.
Furthermore, since we are dealing with branching time structures containing histories,
the axioms |A24 and A25| capture the idea that histories are linear timelines. Axiom
A26| characterizes the no choice between undivided histories principle. In fact, the main
reason why the grand coalition operator [Ag] is added to the language LI is because it
enables the axiomatization of this pivotal STIT principle.

Last, the rule R3 is a variation of the drreflerivity rule proposed by Gabbay et al.
(1994). The rule ensures that moments in a branching time structure are irreflexive and,
consequently, so is time. The rule R3 is not immediately intuitive. To see how it works,
consider a simplification of the rule as proposed by Gabbay et al. (1994):

R3* From (—p A [a]p) — ¢ with p & Atoms(yp), infer .

where [a] is an arbitrary normal modal operator. This rule ensures that [a] behaves
as an irreflexive modality. Adding the reflexivity axiom [a]¢ — ¢ to any consistent
logic containing R3* would render the logic inconsistent. Namely, from [a]p — p we
straightforwardly obtain ([a]p A =p) — L and, thus, by R3* we have L. At a minimum,
the presence of the rule tells us that the logic does not permit any reflexive behavior.
How R3 actually ensures irreflexivity of TDS,-frames is best understood by considering
the proofs of soundness (Theorems 2.1) and completeness (Theorem 2.3) in Section 2.2.
We refer to Gabbay et al. (1994) for a more general discussion of the irreflexivity rule.

Definition 2.3 (TDS,, and DS,, derivations). Let o € L% and T' C L%, we define a
derivation ¢ from premises I' in TDS,,, written I' F1ps, ¢, as follows: there exists a
sequence ©1,...,pn € L of formulae such that @, = ¢ and for each 1 < i < n, @; is
either a TDS,,-theorem, an assumption from T, or a consequence of an application of RO

to some @; =V and @, = — @; with j,k <i. A derivation in DS,, is defined similarly.

Remark 2.1 (Quasi-Agentive Obligation). We point out that the logic DS,, defines the
quasi-agentive reading of ®;, i.e., “agent i ought to see to it that” (some proposition
holds). The DS,,-theorem ®;p = ®;[i]p expresses this. Clearly, the left-to-right direction
follows directly from|A13. The right-to-left direction is proven as follows: First, observe
that ®;([ile — ¢) is a theorem by an application of R1 to A5 and basic modal reasoning
with A12. Since ®; is a normal modal operator, we can infer ®;[ilp — ®;p. In other
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words, the modal operator ®; receives its quasi-agentive reading from the adopted DS,
axiomatization. The above shows that ®; is only quasi-agentive if one adopts the axioms
A9, Al12, and Al3| (on top of the basic STIT logic). The class of deontic STIT logics
introduced in Chapter |3 deliberately does not imply the quasi-agentive reading of ®;. The
reason is that certain prominent alternative readings of Ought-implies-Can cannot be
azriomatized with quasi-agentive deontic modality.

2.1.2 Semantics for Temporal Deontic STIT Logic

We forgo the traditional BT4+AC semantics in characterizing TDS,,. Instead, we adopt
relational semantics (Blackburn et al., |2004). As observed by Balbiani et al. (2008]),
atemporal STIT logic can be semantically characterized using relational frames that model
moments as sets of worlds partitioned into equivalence classes, the latter representing
the choices available to the agents at the respective moments. We adopt this approach in
defining TDS,,- and DS,,-frames. The semantic characterization of the temporal properties
was initially proposed by (Lorini, [2013).

Definition 2.4 (Frames and Models for TDS,, and DS,,). A Temporal Deontic STIT-frame
(for short, TDS, -frame) is defined as a tuple § = (W, Ro, {Ry; | i € Agents}, {Rg, | i €
Agents},R[Ag},Rg,RH} Let R[a] CWxW and R[a] (w) = {U ew | (w,v) € R[a]}
for [a] € Boxes := {0, G, H, [Ag]} U{[i] | i € Agents} U {®; | i € Agents}. Let W be a
non-empty set of worlds w,v,u,.... The following holds:

C1 Rp is an equivalence relation®;

C2 For all i € Agents, Ry; is an equivalence relation;

C3 For alli € Agents, Rj; € Ro;

C4 For allw € W and all uy, ..., un € Ro(w), MNieagents Rpi)(wi) # 0;

C5 Riag is an equivalence relation;

C6 For allw € W, Riag(w) C Nicagents Riij(w);

D1 For all i € Agents and for all w,v,u € W, if v € Rg,(w) and u € Ro(w), then
GRS R@i (u);

D2 For alli € Agents, and all w € W, there exists v € W such that for all u € Ry;(v),
u € Rg,(w);

D3 For all i € Agents, Rg, € Ro;

D4 For all i € Agents, and all w,v,u € W, if v € Rg,(w) and u € Ry;(v), then
u € R@z‘ (U)),

5That is, Rg is reflexive and euclidean.
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T1 R is a transitive and serial relation;
T2 Ry is the converse of Rg, i.e., Ry = {(w,v) | (v,w) € Rg};

T3 For all w,u,v € W, if u € Ruy(w) and v € Ru(w), then v € Ruy(u), u = v, or
u € Ru(v);

T4 For all w,u,v € W, if u € Rg(w) and v € Rg(w), then v € Rg(u), u = v, or
u € Rg(v);

T5 RcoRo C Riag © Ra, where Riq)o Ryg) := {(w,v) | there isu € W, u € Riq)(w),
and v € Rig } for [a],[B] € Boxes;

T6 For allw,u € W, if u € Ro(w), then u & Rg(w).

A TDS,,-model is a tuple M = (§,V) where § is a TDS,-frame and V is a valuation
function mapping propositional variables to subsets of W, i.e., V: Atoms — ().

An (atemporal) Deontic STIT-frame (for short, DS,-frame) is defined to be a tuple
§ = (W,Ro,{Ryp;) | i € Agents},{Rg, | i € Agents}). Where § satisfies C1-C4 and
D1-Dy4. A DS,-model is a tuple M = (§, V) where § is a DS,,-frame and V' is a valuation
function as defined above.

In Definition 2.4, we write Ci (i € {1,...,6}), Di (i € {1,...,4}), and Ti (i € {1,...,6}
to denote the choice properties, deontic properties, respectively temporal properties of
TDS,,-frames. We discuss each property in turn.

First, observe that the relation Ry for [a] € {0} U {[i] | i € Agents} U {[Ag]} is an
equivalence relation by C1, C2, and C5, and thus the set Ry(w) = {v | (w,v) € Ry}
is an equivalence class (cf. the Sb axiomatization of [J, [i], and [Ag] in Definition 2.2).
Property C1 stipulates that TDS,-frames are partitioned into Rg-equivalence classes
representing moments. For each agent in the language, C2 and C3 partition moments
into equivalence classes representing the agent’s choices at these moments (cf. A7). In
what follows, we often call Ro(w) a moment and for each v € Ro(w), we refer to Ry;(v)
as a choice for agent i at moment Rg(w). Property C4 captures the IoA principle,
ensuring that the choices of agents acting simultaneously are jointly consistent (cf. AS8).
Furthermore, C5 expresses that the set R4y (w) is an equivalence class, i.e., a choice of
the grand coalition of agents acting together. Last, C6 ensures that all agents acting
together is a necessary condition for the grand coalition of agents acting (cf. A17).°

Deontic property D1 ensures that obligations refer to what is obligatory at a given
moment irrespective of the choices made by the agents at that moment (cf. /A10). Notice

6As shown by Lorini (2013), condition C6 can be strengthened to equality: i.e., C6* for all w € W,
Riag(w) = ;e Agents 7] (w). In such a setting, completeness is proven by demonstrating that each
TDS,.-frame can be transformed into a frame satisfying the same formulae with the strengthened condition
C6*. Hence, the language £ is not expressive enough to distinguish between the two frame classes.
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that obligations may still differ from moment to moment in a branching time setting.

Property D2 semantically captures the principle of Ought implies Can (cf. All). D3
enforces that ideal worlds are confined to moments (cf. A12). This condition implies that
every ideal world is realizable at its corresponding moment. Subsequently, D4 expresses
that agent-dependent obligations are about choices, thus enforcing that every ideal world
extends to a complete ideal choice (cf. Al3). Property D4 is central for the quasi-agentive
reading of the obligation ®; (cf. Remark 2.1). In what follows, we sometimes refer to

Riij(v) € R, (w) € Ro(w) as a deontically optimal choice for agent 7 at moment Rp(w).

Combined, the conditions T1-T6 ensure that TDS,,-frames are irreflexive, temporal
orderings of moments in a branching time structure. First, T1 and T2 ensure that for

each history, the future is transitive and serial, and the past is the converse of the future.

Properties T3 and T4 stipulate that future and past sequences of worlds are linearly
ordered. As discussed a the beginning of this section, we call such a (maximally) linearly

ordered sequence a history, representing a possible timeline in a branching time structure.

Formally, we can express the history of which a world w € W is a member as the set
Re(w) U Rp(w) U {w}. Just like Ro(w) and Rpj(w) refer to moments, respectively

choices, we use Rg(w) and Ry(w) to refer to the future, respectively past history of w.

Property T6 ensures the temporal irreflexivity of moments.

In particular, condition T5 ensures the STIT principle of no choice between undivided
histories. Namely, if two histories remain undivided at the next moment, no agent has a
choice that realizes one history but excludes the other. To see how T5 formally captures
this idea, suppose towards a contradiction that agent i has two choices R;)(v) and Ry;(u)
at a moment Ro(w) such that the histories of these choices are undivided at a next
moment. Then, there are v' € Rg(v) and v’ € Rg(u) such that Ro(v') = Ro(v), i.e.,
the two future worlds v/ and «’ are part of the same future moment. In other words,
(v, ), (u,v") € RgoRa. Hence, by T5 (v, u'), (u,v') € RjagoRg. This means that there
is a z € Ro(w) such that (v, 2) € Riaq and (2,u') € Rg. By the linearity of histories,
we know that z = u and so (v,u) € Raq. However, by the fact that Ry;(v) N Ry(u) = 0
we know that v and u cannot be part of the same choice of the grand coalition of agents
acting at Ro(w), i.e., (v,u) € Rjag- Contradiction. Consequently, T5 ensures that the
ordering of moments is linearly closed with respect to the past and allows for branching
with respect to the future. We refer to Belnap et al. (2001) for a philosophical discussion
of this principle.

The semantic interpretation of £ is defined as usual.
Definition 2.5 (Semantics of TDS,,- and DS,-models). Let 9 be a TDS,,-model and let
w e W of M. The satisfaction of a formula ¢ € Lt in M at w is defined accordingly:
1. Mw = piff we V(p);
2. Mw = —p iff not M, w = ¢;
3. MwEeAY iff MwE ¢ and M w = P;
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4. Mw = O iff for all u € Ro(w), M, u = ¢;

5. M w = [i]p iff for all u € Ry (w), M, u = ¢;

6. M w = ip iff for all u € Rg,(w), M, u = ¢;

7. M, w = [Agle iff for all u € Riag(w), M, u = ¢;
8. M w = Gy iff for all u € Rg(w), Mu = ¢;

9. M, w = Hy iff for all u € Ry(w), Mu = .

We define |p|lm = {w € W | M, w = ¢} as the truth-set of ¢ (we often omit the subscript
M). We write M, w = ¢ to indicate that not M, w = ¢.

A formula ¢ is globally true on a TDS,,-model M, written M = ¢, if and only if ¢ is
satisfied at every world w € W of M. A formula ¢ is TDS,-valid, written |=T1ps,, ¢, if
and only if it is globally true on every TDS,-model. Last, we say that " C L'fld semantically
entails ¢, written I' |=1ps,, @, if and only if for all TDS, -models M and worlds w € W
of M, if M, w =1 for all Y € T, then M, w = . The logic induced by the class of all
TDS,,-models is the set of TDS,,-valid formulae.

Satisfaction of a formula ¢ € L% in a DS,-model is defined by clauses (1)-(6). Global
truth, validity, and semantic entailment for DS,,-models are defined as above.

Example 2.2 (A Temporal Deontic Scenario). To illustrate temporal deontic STIT
models, consider an extension of the scenario in Example|2.1. Recall that the two agents
John and Paul (i.e., Agents = {j,p}) were in a feud and are both under the obligation
to try to work it out, i.e., (a) ®;try_j A Qptry p. Furthermore, they work it out
together only if they try, i.e., (b) O(work_it_out — ([jltry_j A [p|try_p)). If both
agents fulfill their duty and work it out, then they ought to thank each other (out of
politeness), i.e., (¢) O(work it out — F(®;thank j A ®pthank p)), where thank j
and thank p express “John thanks Paul”, respectively “Paul thanks John”. However, if
they do not manage to work it—i.e., at least one of them violating the initial obligation—
they both ought to get a little help from their friends (say, for mediation), i.e., (d)
O(—work it out — F(®;help j A ®phelp p)), where help j and help p express
“John gets a little help from his friends”, respectively “Paul gets a little help from his
friends”. This second situation represents a temporal contrary-to-duty (CTD) scenario
in which obligations arise from the violation of a previous obligation.”

Figure 2.2 graphically represents the above scenario in a branching time TDS,,-model.
We briefly explain its representation. The model consists of a root moment Ro(w®) and
four immediate successor moments. To illustrate, Ro(v;) (1 < i < 4) is the moment
continuing from wv. We stress that since, in total, four distinct histories emerge from

"In Section [2.4, we discuss CTD in the context of TDS,, at length (see Chapter |1 for an introduction).
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4 —thank j —thank_j
thank_p

______

_______

work it out
Rao(zi) try_j,try_p

2
2
help j 2
P_J] help_j
help_p —help p
—help_j
help p
1

—work it out
—-try_j,try_p Ro(@i)

—work_ it out
try j,-try_p

—work it out
-try j,—-try p

Figure 2.2: A graphical illustration of the temporal contrary-to-duty scenario in Ex-
ample 2.2, For the moment Ro(w®) the symbol w® represents a set of worlds for each
a € {v,u, z,z} because each w® leads to a future moment with four worlds. We stipulate
that after each ; with 5 € {v,u, z,z} and i € {1,2, 3,4} the histories indefinitely continue
with single-world moments only. Moments Rn(z;) and Ro(z;) have a characterization
identical to that of R(u;) and are, for that reason, omitted from the figure. The numbers
assigned to the histories represent utilities and are discussed in Section 2.3.
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Ro(v;) we know by the linearity of timelines that w' represents the set of four worlds
{wy, wl, w§,wj}. We write w¥ to enhance readability of Figure 2.2. The same holds for
w" w*, and w?. Consequently, this model consists of exactly 16 histories. In fact, due
to the irreflexivity and seriality of TDS,,-models, these histories are infinite. It suffices
to stipulate that each history in the model is infinite (we provide an exact model of this
example in Section |2.4). Furthermore, we assume that the moments Ro(zi) and Ro(x;)
(1 < i < 4) represent exactly the same scenario as Ro(u;) and are, for that reason,
omitted from the figure. The choices of j and p are graphically represented by ‘- - -’
lines, respectively <+ + -’ lines. The obligatory choices for both agents are shaded, and
darker shaded when overlapping. (The utilities assigned to the histories in Figure 2.2 are
explained when we discuss Utilitarian STIT logic in Section 2.3.)

The formulae (a), (b), (c), and (d) hold at moment Ro(w®). Furthermore, the obligations
to thank each other—i.e., (e) ®;thank j A ®pthank p-—result from the agents’ joint
compliance with (a) at Ro(w®). Namely, (e) holds at moment Rp(v;) which is a con-
tinuation of w¥ resulting from the joint choices [jltry_j and [p|try_p at Ro(w®), i.e.,
{w?,w"} N{w”,w?}. Similarly, John and Paul’s obligations to get some help from their
friends—i.e., (f) ®jhelp_j A ®phelp p—result from either of the two agents violating
their obligation at Ro(w®). For instance, (f) holds at the moment Ro(u;), which is a
continuation of world w" resulting from the joint choices [j|-try_j and [p]try_p at
Ro(w®), i.e., {w* w"} N{w’,w"}. The same reasoning applies to (f) and moments
Ro(zi) and Ra(z;).

2.2 Soundness and Completeness

Soundness of the logic TDS,, is obtained by demonstrating that all TDS,, axioms are
TDS,,-valid and the logical rules of TDS,, preserve truth on any TDS,-frame. This is a
standard strategy for normal modal logics (Blackburn et al., 2004)). In the sequel, we
make (often implicit) use of the following useful lemma.

Lemma 2.1. The following holds for any TDS,,- and DS, -frame. Let w,v € W and
1 € Agents:

~

. For all v € Ro(w), we have Ro(w) = Ra(v);

. For all v € Ryj(w), we have R)(w) = Ry (v);
Ro(w) # 0 and Ryy(w) # 0;

. For all v € Ro(w), we have Rg,(v) = Rg,(w);

el ==l and el N lwl = e Ayl

S SRR S

Proof. Claims (1)—(3) follow from the fact that Rp and Rp; are equivalence classes, and
statement (4) follows from property D1 of Definition [2.4. The properties of truth sets in
(5) follow by basic semantic reasoning. QED
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Theorem 2.1 (Soundness of TDS,,). Let TDS,, be the logic from Definition 2.2. For any
formula ¢ € ﬁ;d, and any I' C E;d.' if I brps,, @, then T =1ps,, ¢.

Proof. First, we demonstrate the following claim:

() if Frps, @, then =1ps, ¢.

We prove (f) by demonstrating that all axioms are TDS,,-valid and the logical rules of
TDS,, preserve truth on the respective frame class. Take an arbitrary LM-model 93t and
an arbitrary w € W of 9. The axiom schemes A0, A1, |A4) |A9, A21), |A18, and Al4, and
rules RO, R1, and R2 are valid, respectively preserve validity on any relational frame
(Blackburn et al., [2004). We omit their proofs. Validity of the remaining axioms and
rule R3 is shown below.

A2 Assume M, w = Op. Hence, for all v € Ro(w) M, v = ¢ by C1 we know that Ry is
reflexive and thus w € Rg(w). Consequently, I, w |= ¢.

A3 Assume M, w = Op. Hence, there is a world v € Ro(w) such that 9, v = ¢. By
Lemma 2.1-(i) we know that Ro(w) = Rp(v). Therefore, we know that for all
u € Ro(w), v € Ro(u) with M, v = ¢. Hence, by the semantic definition of [J we
know that for all u € Ro(w), M, u = O and so M, w = OO¢p.

A5 Similar to |A2.
A6 Similar to |A3.

AT Assume 9, w = Og. Hence, by the semantic definition of [0 we know that for
each v € Ro(w), M,v = ¢. That is, Ro(w) C |¢[. By property C3, Rpj(w) C
Ro(w) C |¢| and so M, w = [i]e.

A8 Assume I, w = A;cagents Clil@is 1.e., MM, w | 011 A ... A O[nfpn. By the semantic
definition of { there are vy, ..., v, € Ro(w) such that M, v, = [1]e1, ... , M v, =
[n)¢n. Therefore, for all v; with 1 <i < n, Rpj(vi) C [pi|. By condition C4, we
know that there is a u € (\;cagents Ryij(vi). Since u € Rp(v;) for each 1 <i <n
we have M, u |= [1]p1 A ... A [n]p,. Consequently, by property C3 we know that
u € Ro(w) and thus M, w = O Ajepagents|i]i-

A10 Assume M, w = ®;p. Suppose towards a contradiction that 9, w ~ O ®; ¢. Hence,
M, w = 0, ~p and so there is a v € Ro(w) such that MM, v = ©;—¢. Consequently,
by semantic definition of ©;, we know there is a u € Rg,(v) with 9, u = —¢. By

D1 we know that u € Rg,(w) and so, by our initial assumption, I, u = ¢ too.

Contradiction.

Alll Assume M, w = ®;p. By D2 we know there is a v € Ro(w) and for all u € Ry;(v),
u € Rg,(w). Suppose towards a contradiction that 9, w = O[i]p. Consequently,
M, w = O()-¢ and so M,v | (i)—p. By semantic definition of (i) there is
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Al2

Al3

Al5
Al6
AlLT

Al9

A20

A22

A23

A24

A25

A26

a u € Rpj(v) such that M,u = —p. However, since u € Rg,(w) we also have
M, u = p. Contradiction.

Similar to |A7.

Assume M, w = ®;p and suppose towards a contradiction that 9, w K= ®;i]e.
Hence, M, w = ©;(i)—~p. By semantic definition of &; there is a u € Rg, (w) such
that MM, u = (i)~ and by semantic definition of (i) we know there is a v € Ry;(u)
such that 9, v = —~¢. However, by D4 we have v € Rg,(w) too, and so M, v = ¢.
Contradiction.

Similar to |A2.
Similar to |A3.

Assume that 90, w = A;epgents|ilpi- Hence, for each i € Agents we have Rp;)(w) C
lpi] = {ve W | MovE ¢} By straightforward semantic reasoning we obtain
nieAgents R[l} (w) c mieAgents ”SDZ ” and so ﬂieAgents R[z} (w) - ”‘Pl ARTRAN QOnH By C6,
Riag)(w) € Nicagents Rpij(w) and so Riag(w) C [p1 A ... A py|. Consequently, by
the semantic definition of [Ag], 9, w = [Ag] Aicagents Pi-

Assume M, w = Gy and suppose towards a contradiction that M, w = GGe.
Consequently, 9, w = FF—¢. By semantic definition of F we know there is a
v € Rg(w) and there is a u € Rg(v) such that M, u = —p. By T1 we know
u € Rg(w) and so M, u | . Contradiction.

Assume M, w = Gp. By T1 there is a v € Rg(w) and thus by semantic definition
of G we have 9, v = ¢. Consequently, MM, w = Fep.

Assume M, w = ¢, by T2 we know that for all v € Rg(w) there is a u € Ry(v)
such that v = w. By semantic definition of P we thus have for all v € Rg(w),
M, v = Pp. By semantic definition of G, we have 9, w = GPp.

Similar to A22 using T2.

Assume M, w = FPy. Hence, there is a v € Rg(w) such that Mo, v = Py and
there is a u € Ry (v) such that M, u = ¢. By T2, w € Ry(v). By T3 we know
that either (i) u € Ry(w), (ii) u = w, or (iii) w € Ry(u). We consider each case.
Ad (i), then M, w = Py. Ad (ii), then M, w = . Ad (iii), then by T2 u € Rg(w)
and so M, w = Fp. Consequently, M, w = Py V ¢ V Fo.

Similar to A24 using T2 and T4.

Assume M, w = FOp. By semantic definition of F, there is a v € Rg(w) such that
M, v = Qg and by semantic definition of ¢ there is a u € Ro(v) with 9, u = ¢. By
T5, there is a 2z € R4q(w) such that u € Rg(z). Consequently, I, w = (Ag)Fep.

R3 Last, we show soundness of the irreflexivity-rule of TDS,,. Recall the rule:
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From (O-p AO(Gp A Hp)) — ¢ with p & Atoms(yp), infer ¢.

We assume that the atomic variable p does not occur in ¢. We prove the result
by contraposition and assume that ¢ is not TDS,-valid. Therefore, we know there
exists a TDS,-model 9 = (F, V) s.t. §is a TDS,,-frame and M, w [~ ¢ for some
w € W of M. We define another TDS,,-model 9’ = (F, V') over the frame § and
define the valuation V' as follows:

Vi(g) = V(g) if g # p,
v W\ Ro(w) otherwise.

(i.e., the valuation V' of p contains all worlds except those sharing the same moment
with w). Clearly, since ¢ does not contain p and the other atomic propositions
are evaluated in the same way in 9 as in 9, we have 9, w = —¢. However, by
the construction of V' and because § is irreflexive by condition T6, we have that
M w = O-p AO(Gp A Hp)). Since, M, w = ¢, by Definition 2.5, we have that
M w B (O-pAO(GpAHp)) — ¢. Hence, we conclude that (O-pAO(GpAHp)) — ¢
is also not TDS,,-valid.

The above holds for each i € Agents, which finishes the proof of (). We use (1) to prove
the main claim. Assume I' F1ps, . Then, by Definition 2.3| there exists a sequence
©1, -y on € L1 such that o, = ¢, and for all 1 <i < n, ¢; is (i) an TDS,,-theorem, (ii)
an assumption from I', or (iii) a consequence of an application of RO to some ¢; = 1) and
oK = 1 — ; with j, k < i. Take an arbitrary model 9t and world w such that 9, w =T
By (7), for each ¢; € I' for which (i) holds we have I, w = ¢;. By assumption, for each
; for which (ii) holds, we have 9, w = ¢;. By validity of RO and the previous two items,
for each ; for which (iii) holds, we have 9, w = ¢;. Hence, M, w | ¢. QED

Due to the modularity of the above proof, we can see that soundness of the subsystem
DS,, immediately follows from Theorem 2.1l

Corollary 2.1 (Soundness of DS,). Let DS,, be the logic from Definition |2.2. For any
formula ¢ € L%, and any T C LL: if T Fps, ¢, then T [=ps, .
2.2.1 Strong Completeness of Deontic STIT Logic

We first prove strong completeness for the atemporal deontic STIT logic DS,,. The results
obtained in this section are also useful in proving completeness of TDS,, and the class of
deontic STIT logics introduced in Chapter 3.

We adopt the completeness via canonicity method for normal modal logics (Blackburn
et al., 2004). We prove the following claim:

If T |=ps, ¢ then T Fps, ¢
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for T C £4 and ¢ € £4. The strategy is as follows: we define the notion of a DS,,-
maximally consistent set of £¢ formulae (Definition 2.6). These sets are used as worlds in
constructing a canonical model for the logic DS,, (Definition 2.7). Subsequently, we prove
a truth lemma (Lemma 2.5), ensuring that every DS, -consistent set of formulae can be
satisfied on the corresponding canonical model. The main aim is to demonstrate that
the obtained canonical model is a DS,,-model (Theorem 2.6). Finally, the model is used
to prove completeness via contraposition. Namely, if a formula ¢ is not DS,,-derivable
from a set I', then {—p} UT is an DS, -consistent set. By an adaptation of Lindenbaum’s
Lemma (Lemma 2.3) we know there is an DS,-maximally consistent set I extending
{=p} UT. Since I'" is a world in the canonical DS,-model, we know that =y and T" are
satisfiable and so I' [£ps,, .

First, we define DS,,-consistent sets and DS,,-maximally consistent sets.

Definition 2.6 (DS,-CS and DS,-MCS). A set A C L% is a DS, -consistent set (for
short, DS,-CS) iff A t/ps, L. A set A C L2 is a DS,-maximally consistent set (for
short, DS,,-MCS) iff A is a DS,,-CS and for any set A" C L such that A C A’ it is the
case that A' bFps, L.

We prove some useful properties of DS,,-MCSs, which are (implicitly) used throughout
this section. In fact, the results hold for all modal logics considered in this thesis.

Lemma 2.2. Let I" be a MCS. Then, I' has the following properties:

o Fl—DsngDiﬁgDEF;
e pel iff gl

e oANY el iffpel andp €.
Proof. We prove each of the claims in turn:

(i) For the left-to-right direction assume that ¢ ¢ I'. Since I' is a maximal, we know
that I' U {¢} is inconsistent, i.e., I Fps, —¢. Due to the fact that I" is consistent,
we know that I' t/ps, ¢. For the opposite direction observe that if ¢ € I', then
trivially I' Fps,, .

(ii) Suppose that ¢ € I". Observe that if ~¢ € I' as well, then I" would be inconsistent;
hence, = ¢ I'. For the backward direction, assume that —¢ ¢ I'. Suppose
towards a contradiction that ¢ & I, then since I' is a MCS, we know that both
I'u{e} Frps, L and T'U {—¢} Fps, L. However, this implies that I' Fps, ¢ A =,
thus contradicting the consistency of I'. Hence, we know that ¢ € I'.

(iii) If @ A¢p €T, then by fact (i) ¢ € I" and ¢ € T since both I' Fps, ¢ and I' Fpg,, 9
when ¢ A € T'. The opposite direction is proven similarly. QED
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Adapting Lindenbaum’s Lemma, every DS,,-CS can be extended to a DS,,-MCS.

Lemma 2.3 (Lindenbaum’s Lemma for DS,,). Let A C L% be a DS,,-CS: there is a
DS,,-MCS A’ C E% such that A C A'.

Proof. See (Blackburn et al., 2004, Lem. 4.17) for a general proof. QED

Definition 2.7 (Canonical model for DS,,). Let [a] € Boxes = {0} U{[i] | ¢ € Agents} U
{®; | i € Agents} and let (o) be the operator dual to [a]. We define the canonical model
to be the tuple IMC := (W RE ,{R[Ci] | i € Agents}, {R, | i € Agents}, V) such that:

e We:={I'c L |T is aDS,-MCS};

e for each [a] € Boxes and each A € W€, ‘fa](A) ={T e W¢ | forall [a]p € A,
pel}

e V€ is a valuation function such that for all p € Atoms, V¢(p) := {A € W°|p e A}.
The semantic evaluation of formulae from LS is defined as usual (Definition 2.5).

We show some useful properties for demonstrating that the canonical model is a DS,,-
model (Lemma 2.6).

Lemma 2.4 (Existence Lemma). Let [a] € Boxes and let (a) be the operator dual to
[a] B For any world A € W¢ of ¢ and each i € Agents the following holds:

o If (a)p € A, then there is a T' € W€ such that ¢ €T and T € Rg}(A).

Proof. See (Blackburn et al., 2004, Lem. 4.20) for a general proof. QED

Corollary 2.2. Let [a] € Boxes and let («) be the operator dual to [a]. For any world
A € W€ of M° and each i € Agents the following holds:

o If for alliT € R[Ca](A),go €T, then [a]p € A.

The following lemma shows that the defined model is canonical for DS,, i.e., each
DS,,-MCS is satisfiable on this model.

Lemma 2.5 (Truth Lemma). For any » € LI and A € W€ of MC: M, A = ¢ iff
p e A.

8The diamond-shaped operator is the defined dual of its box-shaped counterpart. Consequently, in
the syntactical construction of the canonical model ¢, when we write ¢, we denote the syntactic object
—0-. For readability, we use the defined operator ¢.
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Proof. The proof is by induction on the complexity of ¢. Base case ¢ = p. Follows
directly from the definition of V¢ in Definition 2.7. Inductive Step. The cases for
the propositional connectives = and A are straightforward, see (Blackburn et al., 2004,
Lem.4.21). We show the case for the modality [«] € Boxes:

(¢ = [a]¢) Left-to-Right. Suppose M, A = [a]¢), then for all I' € R, (A), M T = o).

By IH, for all T" € R[Ca}(A), 1 € T'. By Corollary 2.2, [a]y) € A.

Right-to-Left. Suppose [a]i) € A, and take an arbitrary I" € R[Ca}(A), then by
definition of R[Ca] we have ¢ € I'. By IH, ¢, ' = ¢ and since I was arbitrary by
semantic definition of [a] we conclude ¢, A = [a]v. QED

Lemma 2.6 (Canonical DS,,-model). The canonical model MM is a DS, -model.

Proof. W€ and V¢ are trivially well-defined. We only need to show that 9 satisfies the
properties C1-C4 and D1-D4 of Definition 2.4, Take an arbitrary A € W€ of 9¢:

C1 To prove that RE is an equivalence relation, it suffices to show that RS is (i)
reflexive and (ii) euclidean. Ad (i), take an arbitrary ¢ € £¢ and assume Cp € A.
Since A is a DS,-MCS we know that Oy — ¢ € A (axiom |A2). Consequently,
¢ € A. Since ¢ was arbitrary we know by Definition 2.7 that A € RE(A). Ad
(ii), assume that I', ¥ € RE(A). We show that I' € RE(X). Take an arbitrary
¢ € L% and assume Oy € ¥. Suppose towards a contradiction that ¢ & T.
Consequently, since I' € RE(A), O—¢ € A. By the fact that A is a DS,-MCS we
know Q- — 00— € A (axiom |A3) and so (0O—¢ € A. By the assumption that
Y € RE(A) we have O—p € ¥ and so -Up € ¥. This contradicts the assumption
that ¥ is a DS,,-MCS.

C2 Similar to C1.

C3 Consider an arbitrary I' € R[Ci](A). We prove that I' € RE(A). Take an arbitrary

¢ € £4 and assume that Oy € A. By the fact that A is a DS,,-MCS, we know that
Oe — [ilp € A (axiom AT). Consequently, [i]¢ € A and thus ¢ € I'. Since ¢ was
arbitrary we know by Definition 2.7 that I' € RE(A).

C4 LetI'y,...,I'y € RH(A). We show that thereisa 3 € W€ such that ¥ € (;cagents Ri; (Ty).
We construct this DS,,-MCS .. Consider the following set:

Y= | {ellilpeTitu{y| Oy e A}

i€Agents

We suppose towards a contradiction that Y/ is inconsistent, i.e., ¥’ Fpg, L. Conse-
quently, we know that there are @1, ..., ox € Ujcagentsi® | [1] € I';} and there are
Y1, ..., € {¢ | Oy € A} such that

() Fos, (@1 Ao Apr) = (71 V.V =)
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We define for each i € Agents the following set ®; = {¢., | [i]om € Ti}N{p1, ..., or}-
As an immediate consequence, we have A[i|®; € T';, and since [i] is a normal
modal operator [i] A ®; € T';. Since I'; € RE(A) we have O[i] A ®; € A for each
i € Agents and consequently A;cpgents O[] A®: € A. Since A is a DS,-MCS,
we know that A;cagents O] A @i = O Ajcagentsli] A ®i € A (axiom A8) and so
O Nicagentsli] A @i € A. By the existence lemma 2.4, there is a 3 € Rf(A) such
that A;cagents[i] A @i € 3. By the fact that [i] A®; — A®; € ¥ (axiom A5), we
have A;cagents A @i € . By () we have )1 V...V =ty € ¥ but since ¥ € Rf(A) we
also have 91, ...,1; € ¥. Contradiction. Hence, ¥/ is DS,,-consistent. By Lemma 2.3
we know there is a DS,,-MCS ¥ € W¢ extending ¥/. Last, by the construction of
¥/ C ¥ and the definitions of Rf; and Ry we have ¥ € RE(A) and ¥ € Rfi](Fi)
for each i € Agents.

D1 Suppose that I' € RE (A) and ¥ € RE(A). We prove that T' € RE (X). Take an
arbitrary ¢ € £¢ and suppose that ®;0 € 3. Since X is a DS,-MCS we know
®ip — O ®; ¢ € ¥ (axiom A10) and thus O ®; ¢ € ¥. By the fact that R
is an equivalence class (see C1 above) we know A € RE(X) and so ®;p € A.
By the assumption that I' € RE (A) we have ¢ € I'. Since ¢ was arbitrary, by
Definition 2.7, we know that I' € Rg, (¥).

D2 We show that there is a I" such that I' € RE(A) and for all ¥ € Ri; (T') we have
¥ € RE,(A). We construct I'. Let

I'={lie| ®ipeAyu{y|OyeA}

Suppose towards a contradiction that I is inconsistent. Then we know that
Fos,, ([llei A Aldor At Ao Adh) — L

where [i]p1, ..., [i]or EA{[i}go | ® ¢ € T'} and ¢1,....,¢ € {¢ | Oy € T}. Let
S =¢1 N... Ny and ¥ = 1 A ... Afy. By normality of [i], we have Fps_ [i]¢ =
([]]p1 A ... Ali]or) and thus by basic modal reasoning we obtain Fps, 1 — —[i]¢. By
the normality of [J, we have Fps, Cth — O=[i]@, which implies Fps, [ — —0[i]@.
Clearly, because i) € A and the fact that A is a DS,-MCS, we know that
=Q[i]¢ € A. Also, since ®;¢1, ..., Ripr € A and ®; is a normal modal operator, we
have that ®;¢ € A as well. We know that ®;¢p — O[i]¢ € A (axiom A1l) and thus
by the fact that A is a DS,-MCS, we obtain {[i]¢ € A. We have a contradiction,
and so I is consistent. By Lemma 2.3 there is a DS,,-MCS T" such that I" C T". By
the definition of RE and the construction of IY C I" we know I' € RE(A). Last,
assume ¥ € R (I') and take an arbitrary ¢ € £¢ with ®;1) € A. By construction
of T', [i]p € T and thus ¢ € X. Since 1) was arbitrary we have by the definition of
Rg, that X € RS (A).

D3 Similar to C3.
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D4 Suppose that I' € RE (A) and X € R (I'). We prove that ¥ € Rg (A). Take
an arbitrary ¢ € £¢ and assume ®;0 € A. Since A is a DS,-MCS, we know
®ip — @4[i]p € A (axiom A13). Consequently, ®;[iJp € A. Since I' € RE, (A) we
have [i] € T and since ¥ € R‘fﬂ (") we have ¢ € . Last, because ¢ was arbitrary

we have, by Lemma 2.7, that ¥ € Rg, (A). QED

We can now demonstrate strong completeness of DS,,.

Theorem 2.2 (Strong Completeness of DS,,). For any formula ¢ € L, and any T C LY
if T =ps,, ¢, then T tFps,, .

Proof. The proof is by contraposition. Suppose ¢ is not DS,-derivable from I". This
means that I' U {—¢} is a DS,-CS. Namely, if I' U {—¢} would be DS, -inconsistent, then
I',—¢ Fps, L and so T Fps, . By Lemma 2.3 there is a IV C £¢ such that T is a
DS,-MCS and I' U {=¢} C I". By construction of the canonical model, I € W¢ and
by Lemma 2.5 we know that 9¢ I =T and M, T’ = —¢. By Lemma 2.6, M€ is a
DS,-model and so I f£ps,, . QED

2.2.2 Weak Completeness of Temporal Deontic STIT Logic

Following Gabbay et al. (1994)), due to the use of the irreflexivity rule R3, we cannot
readily adapt the standard completeness via canonicity method for normal modal logics
(Blackburn et al., [2004). In order to prove completeness of the logic TDS,,, we must
define a specific canonical model, i.e., one that respects temporal irreflexivity. To ensure
irreflexivity, we adopt the mechanism from Gabbay et al. (1994) and employed by Lorini
(2013)) in the context of STIT, which allows us to encode TDS,,-MCSs with information
that excludes reflexive points in the resulting model.

The strategy is as follows: we define the notion of a TDS,,-maximally consistent set
(MCS) of £ formulae (Definition 2.8). These MCSs are used as worlds in constructing
a canonical model for the logic TDS,, (Definition [2.9). Subsequently, we define a specific
submodel of the canonical model, restricted to specific TDS,,-MCSs called IRR-theories.
An IRR-theory is a TDS,,-MCS constructed in such a way that it coherently and uniquely
labels itself and each reachable TDS,,-MCS. The labeling occurs by giving each MCS
a unique atomic proposition that identifies it (Definition 2.12)). The truth lemma
(Lemma 2.7) holds for the canonical submodel restricted to IRR theories. It is then
shown that each TDS,,-consistent formula ¢ € £ can be consistently extended to an
IRR theory (Lemma [2.8). The gist of the proof lies in the observation that one needs
infinitely many atomic propositions to coherently name each reachable world in an infinite
branching time structure. Since a formula ¢ contains only finitely many atoms, and since
the set Atoms is infinite, there are infinitely many atoms left to coherently define the IRR
theory extending {¢}. The labeling strategy is used to demonstrate that the obtained
canonical submodel is a TDS,,-model (Theorem 2.11). As a last step, this TDS,-model is
used to prove weak completeness via contraposition in the usual way.
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It must be noted that we only obtain weak completeness of TDS,, e.g., see (Gabbay et al.,
1994). In order to prove strong completeness, we must guarantee that any arbitrary
TDS,,-consistent set A can be extended to an IRR theory. However, to ensure that a
TDS,,-maximally consistent extension A’ of A is an IRR theory, we need an infinite
number of atomic formulae p not occurring in A. Hence, A’ cannot contain infinitely many
atomic formulae, e.g., when A’ = Atoms. This observation excludes TDS,,-consistent sets
that are maximal but are not IRR theories. Consequently, not every arbitrary TDS,-
consistent set can be extended to an IRR theory. As observed, we can still guarantee
weak completeness because every TDS,,-consistent formula ¢ is syntactically finite, which
means that there is an infinite number of atoms in Atoms not occurring in .

We now turn to the proof. First, we define TDS,,-maximally consistent sets and the
general canonical model for TDS,, that does not yet ensure irreflexivity. The definitions
are similar to the canonical model construction for the logic DS,,.

Definition 2.8 (TDS,-CS and TDS,-MCS). A set A C L% is an TDS,, consistent set
(for short, TDS,,-CS) iff A t/tps, L. A set A C Lt is an TDS,-maximally consistent
set (for short, TDS,-MCS) iff A is an TDS,-CS and for any set A C L such that
A C A’ it is the case that A’ Frps, L.

Observe that the properties of MCSs proven in Lemma 2.2 also hold for TDS,,-MCSs. For
the remainder of this section, we use Boxes to refer to the set of box-shaped modalities
of £ i.e., Boxes := {0, [Ag],G,H} U {[i] | i € Agents} U {®; | i € Agents}.

Definition 2.9 (Canonical model for TDS,,). Let [a] € Boxes and let (o) be the operator
dual to [a]. We define the canonical model to be the tuple M := (W, RE, {T\’,[CZ] | i€
Agents}, {R§, | i € Agents}, RY, 1, RG, Ry, V©) such that:

e We:={T'C L |T is a TDS,-MCS};

e for each [a] € Boxes and for all A € W€, W (A) = {T eWe| foralla]p € A,
then ¢ € T'};

e V¢ is a valuation function such that for all p € Atoms, V¢(p) := {A € W¢ | p € A}.

We are interested in a submodel of the canonical model, namely, one that excludes
reflexive worlds. In order to guarantee that the submodel satisfies the truth lemma
(Lemma 2.7) we must ensure that the submodel is well-defined. For this, we adopt
Lorini’s (2013) notion of a diamond-saturated set.

Definition 2.10 (Diamond-saturated set (Lorini, [2013)). Let X be a set of MCSs and let
() be dual to [o] € Boxes. We say that X is a diamond saturated set iff for all T € X,

for each (o) € T there exists a A € X such that RiylA and p € A.
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Definition 2.11 (An X-induced submodel 9MX). Let M := (W<, CD,{R‘[ZZ.] | i €
Agents}, {RS, | i € Agents},R[cAg}, RE, Riy, V) be the canonical model from Defini-
tion 2.9. Let X C W¢. We define the X induced submodel M = (WX RE, {R[)Z(] | i e

Agents}, {R% | i€ Agents},R[{ig}, RE,RE, VXY of M as follows:

e WX :=We°nX;
e For each [a] € Boxes, Riy|x := {(I',A) | (I'A) € Ry and T, A € X};
e For each p € Atoms, VX(p) := V¢(p) N X.

Lemma 2.7 (Truth Lemma). Let M be the canonical model and let X C W€ be a
diamond saturated set with T € X, ¢ € L1, Let MX be the X induced submodel of IC.
Then, MX T =y iff ocT.

Proof. Proven in the usual manner (Blackburn et al., 2004, Lem. 4.70). QED

Following Lorini (2013), let IRR-theories be those sets of TDS,-formulae that (i) are
maximally consistent, (ii) contain a label name(p) := O-pAO(GpAHp), uniquely labeling
a moment and (iii) for any world that is reachable through any ‘zig-zagging’ sequence of
diamond operators, that is, every zig-zagging formula ¢ of the form

(1) (@1 A (az)(pa Ao Alam)en)-oo)

where () is dual to [a;] € Boxes with 1 < i < n, there exists a corresponding zig-zagging
formula ¢(q) (where ¢ is a propositional variable) of the form,

(a1) (01 A {a2)(pa A ... A{an) (on A O=g AO(Gg A Hg)))..)

labeling reachable worlds.

Intuitively, the naming formula O-p ACO(GpAHp) € I ensures that the literal —p uniquely
identifies the moment of which I' is part in the constructed canonical model (i.e., O-p).
It is unique because all other moments making up the tree-structure of which I' is part
will satisfy p instead (i.e., O(Gp A Hp)). The inclusion of zig-zagging formulae ensures
that any other moment in the desired branching time structure, reachable through
sequences of diamond operators, will likewise be uniquely named. Subsequently, using
naming formulae (first item of Definition 2.12)) and zig-zagging formulae (second item of
Definition 2.12)) in the selection of TDS,,-MCSs enables us to ensure that each moment
in the canonical model is irreflexive (Gabbay et al.,|1994).

Definition 2.12 (IRR-theory (Lorini, [2013)). Let Zig be the set of all zig-zagging
formulae in £ and let name(p):= O—-p AT(Gp A Hp) where p is a propositional variable.
A set of formulae T is called an IRR-theory iff the following hold:
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e I'" is a TDS,,-MCS and name(p) € I', for some propositional variable p;

e if p € I'NZig, then v(q) € T, for some propositional variable q.
Let IRR := {TI' C L% | T is an IRR-theory } denote the set of all IRR-theories.

The proof of the following lemma demonstrates how for each TDS,,-consistent formula
¢ € L we can construct an IRR-theory containing it.

Lemma 2.8. Let ¢ € szd be a consistent formula. Then, there exists an IRR-theory I’
such that ¢ € I.

Proof. Let ¢ € L1 be a consistent formula. We enumerate the formulae of £ so that
each formula in odd position is an element of Zig and make use of this enumeration to
build an increasing sequence of consistent theories I'g, I'1, ..., I'y, ...

We let Ty := {@ AO-p AO(Gp A Hp)} for some propositional variable p not occurring
in ¢. We define the sequence of I';, (for n > 0) as follows: Assume that I'), is defined
and consider v, of the enumeration. We know that either I';, U {—¢,,} is consistent or
Iy, U{y,} is consistent. If I',y U{—,} is consistent, set I'yyq1 := T, U{-p}. T, U{vy}
is consistent, then there are two cases to consider: either n is even, or n is odd. If n is
even, then set I';,11 := T,y U {1, }. Otherwise, if n is odd, set T'y11 := Ty U {tn, ¥0n(q)},
where ¢ is a propositional variable not occurring in I';, or ¥». We define our desired
maximally consistent IRR-theory as follows:

r;:Urn

neN

To finish the proof, we need to show that I' is both a TDS,,-MCS and an IRR-theory.
We first prove that (i) I is a MCS and then show that (ii) T' is an IRR-theory.

To prove claim (i), it is useful to first prove that for all n € N, each T',, is consistent. We
show this claim by induction on n. In the base case, assume for a contradiction that
o ={eAO-pADO(Gp A Hp)} is inconsistent. Hence, O—-p AO(Gp A Hp) A ¢ Frps,, L,
which further implies that Frps, O-p A O(Gp A Hp) — (¢ — L). We may infer from
the rule R3 that 1ps, ¢ — L. However, we know that ¢ is consistent, meaning that
V1ps, ¢ — L. We have thus obtained a contradiction implying that I'y is consistent.
For the inductive step, assume that I', is consistent. We want to show that I',,41 is
consistent. This trivially follows by the definition of I';, 1.

To prove that I' is a MCS, we must show that I'" is both consistent and maximal. Assume
for a contradiction that I' is inconsistent. Then, this implies that for some finite subset I/
of I', T" + L. However, if this is the case, then there exists some I';, such that T'), Frps, L.
We know this cannot be the case by the previous paragraph, and so, I' must be consistent.
Assume now that there exists some I such that I' C IV and I t/1ps, L. Let ¢p € I\ T.
Since v is a formula in £, we know that if was considered at some point during the

mn
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construction of the sequence I'y, I'y, ..., I'y, .... Since ¢ € I' this implies that there
exists some I, such that I'y, U {¢} is inconsistent. Therefore, I',,, F1ps, —, which
implies that T' Frps, —). Due to the fact that I' C TV, it follows that I Frps, — and
I F1ps,, 9 since ¥ € IV, which is a contradiction. Therefore, I' is a MCS.

We now prove that I" is an IRR-~theory. By construction, we know that ¢ A O-p AO(Gp A
Hp) € Ty C T, and since I' is a MCS, it follows that O-pAO(GpAHp) € T, thus satisfying
the first condition of being an IRR-theory. The second condition of being an IRR-theory
is satisfied by the fact that whenever a formula v € Zig is added to I',, C I, for m € N,
the formula v (q) is added as well with ¢ fresh. QED

The following existence lemma guarantees that the set IRR is a diamond saturated set
(Definition 2.10), which implies that the submodel 9'RR obtained by restricting the
canonical model to IRR theories satisfies the truth lemma (Lemma 2.7).

Lemma 2.9 (Existence lemma). Let I' € IRR be an IRR-theory and let () be dual to
[a] € Boxes. For each (a)p € T there exists an IRR-theory A € IRR such that A € Ry ()
and ¢ € A.

Proof. The proof is the same as in Lorini (2013, Lem. 16). QED

Henceforth, we use the superscript IRR for denoting the elements of the IRR induced
canonical submodel M'RR. We prove the following useful lemma:

Lemma 2.10. Let M'RR be the IRR induced submodel of M. Let (o) be dual to [a] €
Boxes and let ', A € IRR. Then, A € R'[E}R(F) iff for all p € A, (a)p €T

Proof. Left-to-Right. Assume A € R'[S]R(F). By Definition 2.11 we know that A €
Riy (I'). By the definition of Riy (Definition 2.9) we know that for all [a|p € T, p € A.

Which by contraposition gives us for all ¢ € A, (a)p € T

Right-to-Left. Assume that for all ¢ € £, if ¢ € A, then (a)p € I'. Take an arbitrary
Y € L1 and suppose that [a]i) € T'. Since T is a TDS,-MCS we know that (a)— & T.
By contraposition on our initial assumption, we have -1 ¢ A. Because A is a TDS,,-MCS,
we know that @ € A. Since 1) was arbitrary, by the definition of R[ca] (Definition 2.9) we
have established that A € Riy (T"). Since both A,T' € IRR, by Definition 2.11 we know

that (I, A) € R'[gf = Rf,) NIRR x IRR.

QED

It remains to show that the model MM'RR is, in fact, a TDS,-model. It suffices to show
that M'RR satisfies the properties C1-C6, D1-D4, and T1-T6 of Definition 2.4.

Lemma 2.11 (Canonical TDS,-model). The canonical submodel MIRR s ¢ TDS,,-model.
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Proof. We must show that 9U'RR satisfies properties C1-C6, D1-D4, and T1-T6. Due
to the modularity of our approach, the proofs of the temporal properties T1-T5, as well
as C4-C6, are those provided by Lorini (2013)).” The proofs of C1-C4, D1, D3, and D4
are straightforward adaptations of the ones given for the logic DS,, in Lemma 2.6. Thus,
we only need to prove D2. In order to clarify how irreflexivity of M'RR is guaranteed, we
recall the proof of T6 provided by Lorini (2013). Take an arbitrary I € IRR of 901'RR:

D2 We show that there exists a A € IRR such that A € R{ER(T) and for every ¥ € IRR, if
Ye R'[ﬁR(A), then ¥ € RgiR(F). Since I' is an IRR-theory, there is a propositional
variable p such that name(p) € I'. Define

Ao ={[ilp | @ipeTU{y | OyY e T} U{name(p)}

We prove by contradiction that Ay is consistent and then extend Ag to an IRR-
theory. If Ag is inconsistent, then

Frps,, ([tler Ao Afilpr A1 A .o Ay A name(p)) — L

where [i]p1,... [ilor € {[idJp | ®i¢ € T} and ¢1,...,¢ € {¢ | Oy € T'}. Let
¢ =1 N...Nop and ¢ = 1 A... Ay, Since, Frps,, [i]$ = [i]e1 A ... A il we have

F1ps, (¥ Aname(p)) — —[i]p

By the normality of O we know that Frps, (¢ A name(p)) — O-[i]¢, which
implies F1ps, ¢ A Oname(p) — =0[i]. Clearly, because (i) € I, name(p) € T
and Frps, name(p) — Oname(p), we have that I' Frps, —O[i]¢. This implies that
—Q[i]¢ € T since I' is an IRR-theory.

Also, since ®;¢1,...,®ipr € I' we have ®;p1 A ... A Qi € I'. By F1ps, ®i¢ =
®ip1 A ... N i) we conclude ®;¢ € I' as well. Since ®;¢p — O[i]¢p € I' (axiom
All), we obtain by modus ponens that ¢[i|p € I'. Since T is an IRR-~theory (and
hence consistent), we obtain a contradiction, which proves that A is consistent.

We now extend Ag to an IRR-theory A by first defining an increasing sequence Ag,
Aq, ..., Ay, ... of sets of formulae. Suppose that A,, is consistent and defined, and
enumerate the formulae of £!9 so that each formula in odd position is an element
of Zig. We define A, 1.

Consider the formula v,,. Either, A, U{—,} is consistent or A,,U{, } is consistent.
If the former holds, then let A, 1 := A, U{—,}. If the latter holds, then there are

Although the non-deontic frame properties are the same, Lorini (2013) uses a different labeling of
the properties than we do in this chapter. He defines the properties in Def. 2.4 of (Lorini, [2013). To
facilitate comparison, we point out that C1, C2, and C4 correspond to the second bullet in Def. 2.4.
Properties C3, C4, and C6 corresponds to (C1), (C2), respectively (C3) in Def. 2.4. The temporal
properties T1 and T2 correspond to the third bullet in Def. 2.4. Last, T3, T4, T5, and T6, correspond
to (C4), (Cb), (C6), respectively (C7) in Def. 2.4.
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two subcases to consider: either n is even, in which case, we let A, 11 := A, U{t¥,},
or n is odd, in which case, A,, U {4y} is consistent and 1, € Zig. We show that in
the latter subcase, we can find a propositional variable ¢ such that A, U{¢y, ¥, (q)}
is consistent; we then define A1 := Ay U{tn, ¥n(q)}-

First, we show that for I,

Oi(name(p) A\ xAtn) €T (2.1)
XEAn\Ao

Suppose towards a contradiction that (2.1) does not hold. Then,

Ri((name(p) A N\ x) = ) €T
XEAR\Ag

since I" is an IRR-theory and has the properties specified by Lemma 2.2. By the
definition of Ag it follows that

[i](name(p) A\ X) = —¥n) € A,
XEAR\Ap

Using the axiom scheme [i]§ — 6 A5, we infer that

A, Frps, (name(p) A /\ X) = "
XEAn\AO

Since
A, Frps, name(p) A /\ X
XGAn\Ao
we conclude that A, Frps, —n,, which contradicts the fact that A, U {¢,} is
consistent and, so, (2.1) holds. Consequently, since I' is an IRR-theory, we know
that

Si(name(p) A\ xAvn(q) €T (2.2)
XEAR\Ap

Using this fact, we prove that A,4+1 := Ay, U {t¥n, ¥ (q)} is consistent. Suppose
towards a contradiction otherwise. Then, there exist 61,...,0,, € {6 | 00 € I'} and
[i}y1,- - il € {lily | @iy € T'} such that

Fros, 01 A+ Al = ([i1y A Alilye = ~(name(p) A N\ x Avna(q)))
XEAR\Ao

By the normality of ®;, we can derive

Fros, @i(01 A Abm) = @i([iyi A Alilye = —(name) A [\ xAa(q)))
XEAR\ Ao

Using axiom A12 we obtain

Fros, D01 A~ Abm) = @i([iln A= Al = =(name(p) A N\ X Aa(a)))
XEAR\Ap
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By the assumption that 6y,...,0,, € {6 | 00 € I'} and the fact that T" is an
IRR-theory, we know that (61 A --- A 6,,) € T, implying that

Qi([i]y1 A - A [i]ye = —(name(p) A /\ XA Yn(q)) €T
XE€EAR\Ao

We infer by the normality of ®; that

®ili](n A A) = @im(name(p) A\ xAtnl(g)) €T
XEAR\Ag

Using the axiom scheme ®;p — ®;[i]p (A13) we derive

Ri(n A An) = @-(name(p) A\ xAtn(g)) €T
XEAR\Ag

Our assumption implies that ®;(y1 A--- A7) € I', and so

@i~(name(p) A\ xAn(@) €T
XEAR\Ao

This contradicts (2.2) and proves that A, U {¢,¥,(q)} is consistent.

It is straightforward to infer that A is an IRR-theory by an argument similar to
Lemma 2.8.

Clearly, A € RIRR(T) holds by the definition of A. Last, let 3 be an arbitrary

IRR-theory in IRR. Assume that ¥ € R'[ER(A) holds and let ®;¢ € I'. By definition

[i]o € A, and so, ¢ € ¥ by the definition of the relation R'[ETR, which completes the

proof.

T6 Let A € IRR and assume that A € RIFR(T"). We show that A ¢ RIER(T). Since A
is an IRR-theory we know name(p) € A for some atom p € Atoms. Consequently,
O=p,0Gp,OHp € A. Since O-p — —p € A (axiom A2) we also have —-p € A. By

the fact that RIRR is an equivalence relation, we have I' € RIRR(A) and so Gp € T.

Furthermore, since I' is an IRR-theory, we know that F—p & I'. Last, since =p € A
by Lemma 2.10 we obtain A ¢ RER(T). QED

Theorem 2.3 (Weak completeness of TDS,,). For any formula ¢ € L%, if =1ps, ¢,
then l_TDSn ©.

Proof. Suppose that ¢ € Efld is consistent. By Lemma 2.8, we can extend ¢ to an
IRR-theory I' such that ¢ € I'. By Lemma 2.9, we know that the set IRR is a diamond
saturated set, and so, by Lemma 2.7, we know that 9'RR T = ¢ iff ¢ € T. Hence, we

can conclude that 9M'RR T |= . By Lemma 2.11 we know that 9'RR is a TDS,,-model.

Therefore, ¢ is satisfiable on a TDS,,-model. QED
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2.3 Transformations into Utilitarian Models

In this section, we prove that the logics TDS,, and DS,, are also sound and complete
with respect to the traditional utilitarian semantics (Objective 3). This means that our
relational semantics is equivalent to the utilitarian approach. In particular, we show
that DS,, is equivalent to the logic of dominance ought based on (act) utilitarian STIT
models, as developed by Horty (2001, Ch.4). We obtain these results by demonstrating
how TDS,-models can be truth-preservingly transformed into utilitarian STIT models.
To be precise, we introduce a utility function ‘util’ that maps natural numbers—i.e.,
utilities—to worlds in the model.'’ In contrast to (Horty, 2001; Murakami, 2005)), we
start with assigning utilities to individual worlds and only later modify our approach
by assigning utilities to complete histories (i.e., where all worlds on a timeline have the
same utility). There are two reasons for doing this. First, the atemporal language of £%
cannot distinguish between multi-moment models and single-moment models (Balbiani
et al., 2008; Murakami, [2005) and thus utility assignments may be safely restricted to
individual worlds in DS,,. Second, once we move to an explicit temporal setting, certain
problems arise with respect to assigning utilities to complete histories. The latter is
discussed in Section 2.4l

2.3.1 The Semantics of Dominance Ought

Horty (2001) defines Dominance Act Utilitarianism as “a form of act utilitarianism
applicable in the presence of both indeterminism and uncertainty, and based on the
dominance ordering among actions” (p.73). Formally, indeterminism and uncertainty
refer to branching time, respectively, choice in the context of STIT (see page [26). The act
utilitarian approach to STIT takes the evaluation of utilities as the ground for obligation:
by comparing utilities, one can obtain an ideality ordering on the choices available to
each agent. Horty (2001, Ch.3-4) provides an extensive argument for the adaptation of,
what he calls, the dominance ought: in brief, what an agent ought to see to is defined in
terms of the choices that are not strongly dominated by any other choice available to the
agent, irrespective of the choices made by any of the other agents. One may thus think of
this notion as an all-things-considered obligation. In the remainder, we make the above
formally precise and define Temporal Utilitarian STIT logic (for short, TUS,). We use
US,, to denote the atemporal subsystem called Utilitarian STIT logic (for short, US,,).

Remark 2.2. [t must be noted that Horty (2001) initially developed the semantics of
dominance ought for Branching Time frames (BT) with Agential Choice (AC) functions.
Fortunately, because BT+AC frames can be directly translated into relational semantics
(Balbiani et al., |2008; Lorini, 2015)—such as the one employed in this chapter—the trans-

"Horty (2001) takes the reals as default utilities. Although irreflexive and serial branching time
frames are infinite, they are countable infinite: every node is reachable by a finite path, and there is at
most countably infinite branching at each node. Consequently, it suffices to use the natural numbers N
to assign a (possibly unique) number to each world in the model. Last, we point out that the idea of a
utility is abstract, i.e., how those utilities came about is not taken into consideration.
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formation of the semantics of dominance ought (Horty, |2001)) into relational semantics
is straightforward.

Definition 2.13 (Frames and Models for TUS,, and US,). A relational Temporal
Utilitarian STIT frame (for short, TUS,-frame) is a tuple § = (W,Ro, {Ryli €
Ag}, util, Riag), R, Ru), where § satisfies conditions C1-C6 and T1-T6 of Defini-
tion |2.4| together with the following:

U1 util : W — N is a utility function assigning each world to a natural number.

A TUS,-model is a tuple M = (§,V) where § is a TUS,-frame and V is a valuation
function assigning propositional atoms to subsets of W, i.e., V: Atoms — p(W).

A relational Utilitarian STIT frame (for short, US,-frame) is a tuple § = (W, Ro, {Ry;li €
Ag}, util) satisfying the conditions C1-C4 of Definition 2.4 together with U1 above. A
US,,-model is defined as usual.

In order to semantically characterize the interpretation of the dominance ought ®;, we
need some additional machinery. First of all, we need to make precise what it means for
a choice to be optimal “irrespective of the choices made by any of the other agents”. To
model this, Horty introduces the notion of a state (of nature): “we will identify the states
confronting an agent at any given moment with the possible patterns of action that might
be performed at that moment by all other agents” (p.66). The principle of independence
of agents ensures that no agent can influence the choices of any other agent. Therefore,
one can regard the joint interaction of all other agents as a state of nature for that agent.
Subsequently, an agent may compare each choice available to her with a given state, each
resulting in a unique outcome (namely, that of all agents acting together). A dominance
ordering then orders an agent’s choices according to these possible outcomes.

Formally, let v € Ro(w), then a state Rfi](v) for agent i at v is defined as,

L) = N R

keAgents\{:}

The possible combinations of choices available to the set Agents\{i} are the different
states available at that moment to agent <. We point out that the independence of
agents principle ensures that the joint choice of any combination of choices of all agents
is non-empty, which, a fortiori, makes each individual choice, as well as each state,
non-empty.

Subsequently, we define a preference order < over choices and collective choices, including
states. Let util be a function assigning natural numbers to worlds, i.e., util : W — N, and
let Rp;)(v), Ry (2) € Ro(w), then weak preference is defined asth,

"Henceforth, we use the quantifies V and 3 as abbreviations for ‘for all’ and ‘there exists a’.
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R (v) < Rypy(z2) := Vo* € Ry(v), V2" € Ry (2), util(v*) < util(z*)

where util(v) denotes the natural number assigned to v. The preference order over R[Si]
is defined similarly. The above definition states that, for an agent ¢, a choice is weakly
preferred over another whenever all values of the possible outcomes of the former are
at least as high as those of the latter. Strict preference is then defined as usual, i.e.,
Riij(v) < Rpy(2) == Ry (v) < Ryyy(2) and Ry (2) £ Rpyy(v).

Next, a dominance order < over choices Ry;)(v), R;j(2) € Ro(w) is defined as,

’R,M(U) = ’R,M(Z) =VR}

(@) € Ro(w), Ry (v) N R

m(x) < Rp(z) N Rfi] (x)
where VR, () € Ro(w) means for each available state to i at moment Rp(w) with
x € Ro(w). Informally, the dominance ordering expresses that an agent’s choice weakly
dominates another if the values of the outcomes of the former are weakly preferred to those
of the latter choice, given any possible state available to that agent. Last, strict dominance
is defined as usual, i.e., Rpj(v) < Ry)(2) := Rpj(v) 2 Ryy)(2) and Ry)(2) A Ry (v). We
use the dominance ordering for the semantic evaluation of the modal operator ®; (see
(Horty, 2001, Ch.4) for a more detailed discussion).

Definition 2.14 (Semantics of TUS,,- and US,-models). Let M be a TUS,,-model, w € W
of M and let || = {w | M, w |= ¢} be the truth-set of ¢ over M. We define satisfaction
of a formula ¢ € Lt at a world w of M by adopting clauses 1-5 and 7-9 of Definition 2.5
together with the following clause:

10. Mw = @i iff  for all Rpj(v) € Ra(w), if Ry (v) € @], then there is a
Ry (2) € Ro(w) such that (i) Ry)(v) < Rp(2),
(i) Ry (2) C |l, and (iii) for each Rp;(x) € Ro(w),
if Ry (2) 2 Rypg(x), then Ry (z) C [l

Let M be a US,-model. We define satisfaction of a formula ¢ € L% by adopting clauses
1-5 of Definition 2.5 together with clause 10 above.

Global truth, frame validity, and semantic entailment are defined as usual (Definition 2.4).
We define the logic TUS,, as the set of all L1 formulae valid on the class of TUS,-models.
The logic US,, is defined as the set of all LS formulae valid on the class of US,,-models.

Clause 10 of Definition 2.14|is a relational representation of the semantic evaluation of
the dominance ought in (Horty, 2001). It must be interpreted as follows: agent i ought
to see to it that ¢ holds iff for every choice Ry;(v) available to i that does not guarantee
¢ there (i) exists a strictly dominating choice Rp;j(2) that (ii) does guarantee ¢ and (iii)
every weakly dominating choice Ry;(z) over Rp;(2) also guarantees ¢. In other words,
all choices not guaranteeing ¢ are strictly dominated by choices guaranteeing ¢ at the
moment of evaluation.
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Notice that TUS,-frames only differ from TDS,-frames through replacing the relation
R, (for each i € Agents) and corresponding conditions D1-D4 with the utility function
util and condition Ul. The same holds true for US,- and DS,,-frames.

Example 2.3 (A Utilitarian Scenario). Consider the utility assignment in Figure 2.2
on page 36. The utilities at moment Ro(v;) are assigned as follows: util(v;) = 4 for
i € {1,2,3} and util(vy) = 3.*%| At Ro(v;), both John and Paul have the choice to thank
each other for working it out, i.e., {[j]thank j and {[p|thank p. In fact, for both
agents, this choice guarantees a utility of 4 and John and Paul are obliged to thank one
another. To illustrate, using Definition |2.14, we know that John ought to see to it that
he thanks Paul—i.e., ®,thank j-—since the choice R[ﬂ (v2) not guaranteeing thank__j
is strictly dominated by the only other choice R; (v1) guaranteeing thank j (to see this,
observe that v4 € Ryj(v2) has a utility of 3). If the two agents fulfill their duty, this
yields a utility of 4 at Ro(v;). If both act against their duty, the outcome will be of a
strictly lesser utility 3.

2.3.2 Equivalence of the Two Semantics

First, we show that the Hilbert-style axiomatizations TDS,, and DS,, are sound with
respect to the class of TUS,,-models, respectively, the class of US,-models. We start by
pointing out some useful facts.

Lemma 2.12. Let DS, be the atemporal minimal deontic STIT logic consisting of axioms
AOHA9 and |A12, and the rules RO and R1. The following holds:

1. Let DS, {A10} be the logic DS, extended with axiom Al0 ®;o — O ®; ¢ and let

DS,, {B10} be the logic DS, extended with aziom B10 ¢ ®; ¢ — O ®; ¢. Then:

DS,, {A10} = DS,, {B10}.

2. Let DS, {A13} be the logic DS, extended with aziom Al3 ®;p — ®;lil¢ and let
DS,, {B13} be the logic DS,, extended with axiom B13 O([il¢ — [i]y) — (®ip —
®4). Then: DS; {AI3} = DS {B13}.

Proof. The proofs are straightforward cases of modal reasoning. We briefly sketch the
main steps and theorems used.

Ad (1). The left-to-right direction straightforwardly follows from the fact that O is an
S5 modality in DS,; and, so, ®;p — O ®; ¢ is a DS, {B10}-theorem. For the right-to-left

direction, observe that ¢ ®; ¢ — 00 ®; ¢ is a DS, {AL0}-theorem by the normality of .

By the fact that OJ is an S5 operator, we know 00 ®; ¢ — O ®; ¢ is a DS, {A10}-theorem
and so, by basic modal reasoning, 0®; — [ ®; ¢ is a theorem.

12In Figure 2.2 utilities are represented as assigned to histories. In Section |2.4, we reconsider the
example in light of utility functions restricted to histories. We note that each utility function restricted to
histories straightforwardly yields a function restricted to moments. We refer to Definition 2.16 for details.
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Ad (2). The left-to-right direction follows from the basic STIT theorem O([i]¢ — [i][i]p)
(S5 behavior of [i]), together with O([i]p — [i]Y) — (®ip — ®;1), which implies ®;p —
®ili]e as a DS, {B13}-theorem. For the right-to-left direction, it suffices the observe
the following: O([i]p — [i]v), ®ip Fps- (A13) ®i([i]e = [i]Y) A ®ii]e (by |A12 and A13,
respectively). The normality of ®; implies O([i]p — [i]Y), ®i¢ Fps- (A13) ®i(([()e —
[i]1) Ali]p). By straightforward modal reasoning we have O([i]e — [i]v)), ®;p Fps- (AT3)
®;[i]p. By the fact that [i] is an S5 modality and by the normality of ®; we know
'_DS;{AIB} ®;li] — ®41. Consequently, O([i]p — [i|v), ®ip FDS;{AIB} ®;1. QED

Lemma [2.12' demonstrates that the alternative axiomatization of the deontic STIT
modality ®; by Murakami (2005) is equivalent to the axiomatization of ®; provided in
this chapter (Definition 2.2). We use this fact in the following theorem.

Theorem 2.4 (Soundness of TUS,,). For each ¢ € L% and T C LY, if T F1ps, @, then
I' =rus,, »-

Proof. By the modularity of our approach, it suffices to only consider the deontic axioms
A10-A13. The axioms All and A12 were shown sound by Murakami (2005) with respect
to US,, and hence they are also sound with respect to TUS,,. Furthermore, the axioms
O®; — O ®; ¢ and O([i]le — [i]v) — (®;¢p — ®;1) are shown sound by (Murakami,
2005) and so, by Lemma 2.12, we know that axioms A10 and /A13| are sound with respect
to TUS,, too. QED

Completeness is shown through the stronger result in Theorem [2.6, which demonstrates
that the class of TUS,-models characterizes the same set of formulae as the class of
TDS,,-models. In what follows, we make (often implicit) use of the following lemma.

Lemma 2.13. The following holds for any TUS, -, respectively TDS,,-model:

1. For all v € R (w), we have Rfﬂ(w) = Rfﬂ(v);

2. For all R(2) € Ra(w), either Ryj(2) € Re, (w) or Rij(2) N Re, (w) = 0.

Proof. Claim (1) follows from the fact that R, is an equivalence class. We prove (2)
by reasoning towards a contradiction. Suppose there is a Rp;)(z) € Ro(w) such that
Rpi)(2) € Re,(w) and Ry;)(2) "R, (w) # 0. Tt follows that there is a 2" € Ry;j(2) \ Re, (w)
and, consequently, 2’ ¢ Rg,(w). Furthermore, there is a 2" € Ry;(2) N Rg,(w) which
implies that 2" € Rg,(w). By Lemma 2.1-(2) we know that 2’ € Rp;)(z) = Ry;)(2”) and,
consequently, by D4 we obtain 2z’ € Rg,(w). Contradiction. QED

We now prove that every TUS,-valid formula is a TDS,,-valid formula (Lemma [2.16). We
do this by constructing a TUS,, model from a TDS,,-model (Lemma [2.14)). Then, we show
that the constructed TUS,,-model satisfies exactly the same formulae as the TDS,,-model
from which it is obtained (Lemma 2.15). We start by defining the transformation.
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Definition 2.15. Let M = (W, R, {Ry; | i € Agents},{Rg, i € Agents}, R4, Re.
Ru,V) be a TDS,,-model. Let M* = (W, R, {R[ZH’L € Agents}, util, R[Ag], Rg, Ru, V) be
defined as follows: W := W, Rg := Rg, Ry := Ry, Rjag) := Riag: Re := Re, Ru := R,
and V(p) := V(p) for each p € Atoms. Let util be a function assigning each w € W to a
natural number i € N according to the following three criteria:

ul. For all i € Agents, and for all w,v,z € W, if v,z € Ro(w), v € Rfi](w) \ R, (w),
and z € R (w) N Rg, (w), then util(v) < util(z);

u2. For allw,v,z € W, if v € Ro(w)\Rg,,(w) and z € Rg 4, (w), then util(v)<util(z);

u3. For all w,u,z € W, if v,z € Rjj(w) N Rg,(w), then util(v) = util(z).

where Rg ,, = icagents R -

To enhance the readability of our proofs, we briefly discuss the intuition behind the three
criteria. In the sequel, we call a world w € Rg, a deontically ideal world. Then, ul
expresses that all deontically ideal worlds belonging to a particular state have a utility
at least as high as any non-deontically ideal world belonging to that same state; u2
stipulates that those worlds deontically ideal for all the agents have a strictly higher
utility than any other world; and u3 ensures that all deontically ideal worlds belonging
to the same state receive the same utility.

The following lemma shows that the obtained model is, in fact, a TUS,-model.

Lemma 2.14. Let M be a TDS,,-model and let M* be obtained following Definition |2.15:
MY is a TUS,,-model

Proof. Observe that conditions C1-C6, and T1-T6 of Definition 2.4 are satisfied by
M since all of the relations of M?*¢, with the exception of Re,, are identical to those in
M¥. Furthermore, util satisfies property U1 of Definition 2.13 and is well-defined. QED

Lemma 2.15 shows that satisfaction in the constructed TUS,-model is equivalent to the
TDS,,-model from which it is generated. Since the proof is for arbitrary TDS,,-models we
know that a function util of Definition [2.15 exists for every such model.

Lemma 2.15. Let M be a TDS,, model and let M* be obtained following Definition 2.15.
For all v € £ and all w € W: MY w = o iff M¥ w |= 1.

Proof. The proof is by induction on the complexity of .

Base Case ¢ = p. By the definition of V in M it follows directly that M w |= p iff
weViff weViff M, w E p.
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Inductive Step. The cases for the propositional connectives and the modalities [a] €
{O}yU{[i] | i € Agents} U {[Ag], G, H} are straightforward by the construction of M*. We
consider the only non-trivial case ¥ = ®;p.

Left-to-right. Assume M w = ®;p. By the semantic interpretation of ®; in Defini-
tion 2.13 it suffices to prove that: for all Rj;)(v) € Ro(w), if Ryj(v) € [¢|mu, then there
is a Rpj(u) € Ro(w) such that the following three clauses hold:

() Rpp(v) < Rpgp(u);
(i) Rp(u) S leelme;
(iii) for all R[z] (z) € Ro(w), if R[z] (u) < R[l] (x) then R[z] () C |e|mu.
Let Rj;)(v) € Ro(w) be an arbitrary choice and assume that Ry (v) € |¢[m«. We prove

the existence of a choice Ry;j(u) € Ro(w) for which conditions (i)—(iii) hold. Observe that
since M satisfies C3 and D2 of Definition 2.4 we know that

there is a u € W such that Ry;(u) € Ro(w) and Ry;j(u) € Re, (w) (2.3)
and, therefore, by construction of M" we know Ry;(u) = R;)(u). We demonstrate that
conditions (i)—(iii) hold for Ry(u) € Ro(w).

Before we address each item, we make two useful observations concerning R;)(u). By D2
we know that for all j € Agents\{i}, there is a u; € Ro(w) such that R;(u;) € Rg,(w)
and by C4 (IoA) we have (jcagents\ i} R(j] () N R (u) # 0. Therefore,

there exists a u* € ﬂ Rij)(ug) N Ry (w). (2.4)
jEAgents\{i}

As a consequence, the following statement holds for u* at M?9:

u* e m R@J- (w) N R@i (w) = R@Ag (w) (25)
jEAgents\{:}

We now prove (i)-(iii):

(i) We show that Ry;(v)<Ry;(u), that is, we show (a) Ry;(v) = Rpj(u) and (b) Ry(u) A
R (v).
(a) Recall our assumption that Ry (v)Z |¢|mu. Thus, we know there is a v*€ Rp;(v)
s.t. MY, v* b . By construction of M¥, v*€ Ry;j(v) and by IH we have M v* b= o.

Consequently, by the assumption that M, w = ®;¢, and the fact that M, v*} o,
it follows that v*¢ Re,(w). Hence, we know that Rp;)(v)Z Re,(w), which implies
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Re,;(w) N Ry(v) = 0 by Lemma 2.13—(2). Therefore, by R, (w) N Rj(v) = 0
along with statement (2.3), we know that

For all z,u/,v' e W, if v € Rpy(z) N Ry (v) and u' € Ry (@) N Ry (u),

, (2.6)
then v’ € R (2)\Re, (w) and v’ € Ry (z) N Re, (w).

Let z,u/,v" € W be arbitrary and assume that v/ € R[S]( r) N Ry(v) and o' €
Ri () N Rp;)(u). By statement (2.6), it follows that v’ € Rj; ( N\Rg, (w) and
u € R () NRg,(w), which in conjunction with criterion ul of the util function of
M® (Definition 2.15) implies that util(v") < util(u’). Therefore, the following holds,

For all z,u/,v' e W, if v’ € Rpy(z) N Ry (v) and u' € Ry (@) N Ry (u),

then util(v') < util(u ). (2.7)

It follows that for all R (z) € Ro(w), R(z) N Ry(v) < Rij(x) N Ry (u). Hence,
by the definition of < and the definition of M*, we obtain Ry;(v) =< Rp;j(u).

(b) We need to show Ry;(u) Z Rj;(v). By definition of <, it suffices to show that
there are x,u/,v" € W such that R;)(x) € Ro(w), u'€ Ry (u )ﬂRf}( ), v'e Ry (v) N
Rpy (), and util(v") < util(u "). Consider M;eagents\ (i} Rij)(ws) N Ry (u) # 0 from
statement (2.5). Let R[]( z) = ﬂ]eAgents\{}R[j](uj) = m]eAgents\{z} R[z](uj) =
R (z). Clearly, Rf]( r) C Ro(w). Since M satisfies C4 (IoA) we know that
Ry (@) N Ry (v) # () and so Ry (@) N Ry (v) # () by the definition of M*. Therefore,
there is a v/ € RM( z) N Rpp(v). Since u* € Njcagents\{i} Rijj(uj) N Ryg(u) by
statement (2.4), we know that u* € M;cagents\(i} R(j(%5) N Ry (), implying that
u* € RY(x) MR (u). We know R, (w) N Ry (v) = () by Lemma 2.13-(2) and thus
Riij(v) N R ,, (w) = 0 too. Consequently, since Ry;(v) # 0 we know there is a v’ €
Riig "Rao(w) \ Re 4, (w). By criterion u2 of the util function of M* (Definition 2.15)
and the facts v € Ro(w) \ Re ., (w) and u* € Rg ,,(w) (statement (2.5)), we have
util(v') < util(u*). Therefore, Ry (u) 2 Ry (v).

(ii) By assumption R, (w)C|¢[ e and by statement (2.5) we know Rpj(u) € Re, (w).
By IH we have |¢[ pa=[p|me and since Ry (u)=Rp)(u) we know Rpj(u) C [p]me.

(iii) We prove the case by contraposition and show that for all Ryj(z) C Ro(w), if
Rij(2) € |¢lmu, then Ry (u) Z Ry (). Let Rpj(z) be an arbitrary choice in Ro(w)
and assume that Ry (z ) Z ||cp|\Mu We prove that Ry;(u) Z Rpj(7). By definition
of < it suffices to show that there is a state Rf]( y) € Ro(w) such that there is a
u' € Ry (u) N Rjj(y) and a r' € Ry(x) N Ri;(y), with util(z”) < util(v"). We prove
that Ry ]( u*) is this state.

By the assumption that Rpj(z) € |¢[mu, we know there is a 2’ € R;)(x) such that
M*, 2’ = ¢. Clearly, 2’ € Ry;(x), and by ITH we know that M 2! = . Since
M w l= @, we obtain 2’ € Re,(w), and by Lemma 2.13—(2) we obtain
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Riij(z) € R, (w). (2.8)

By statement (2.5) we have u* € Rg,, (w) and u* € Rg,(w). Also, we know
u* € Ryj(u) by statement (2.4). Since, u* € ;caq 13 Ryijj () N Ry (u), we also
have u* € (jcagents\fi} Rpjj(us)- Let Rf}( u*) = Njeag\ iy Ry (uy)- Since M
satisfies C4 (IoA), we obtain Ry;(x) NR, (u”) # (), implying that there exists some
2’ € R () N Ry (u”). Tt follows from D2 and statement (2.8) that ' ¢ Re,, (w),
which together with the fact that u* € Rg ,,(w) (statement 2.5), implies by criterion
u2 of the util function of M* (Definition [2.15) that util(2’) < util(x*). Furthermore,
by the construction of M*, we have x" € Ry;(x) N R[SZ]( “),u” € Ry (u) NRE, (u*) and
util(z) < util(u*), which implies the desired claim Ry;j(u) £ Ry;().

Right-to-left. Assume M",w = ®;p. We reason towards a contradiction by assuming
MM w B~ ®;p. Hence, there exists a v € Rg, (w) such that M v [~ ¢. Since M
satisfies D4 we obtain R(;(v) € Re,(w) and hence Ry;(v) € [¢|pea. By IH and the
construction of M“, we obtain Rj;(v) € [p|mu. This fact, in conjunction with the
assumption M*, w |= ®;¢, implies that there exists some R};(2) € Ro(w) such that the
fOHOWiIlg hold: (1) R[z] (’U) < Rm(z), (ii) R[Z](z) - H90||M“7 and (iii) VRM (x) - RD(U)), if
Rpij(2) 2 Rpy(2) then Ry(z) S [ofme.

By Lemma 2.13—(2) and the fact that R;)(2) = Ry;(2), we know that either (a) Ry;(2) C
R, (w) or (b) Rjj(2) N Re,(w) = 0 is the case.

Suppose (a) is the case. We know that Ry;(v) < Rp;j(2) and therefore, R;)(2) Z Rpj(v).
Hence, there is a R[Si](:c) C Ro(w) with z* € Rp;(2) N Rfi](ac), and v* € Rp(v) N [l]( x),
such that util(v*) < util(2*). We also know that Ry;j(v) C Re,(w) and R;j(2) € Re,(w)
and thus we obtain z*,v* € Rg,(w) N Rfl](:v) Consequently, by criterion u3 of the util
function of M* (Definition 2.15) we obtain util(v*) = util(z*). Contradiction.

Suppose (b) is the case. We know that Ry)(v) < Ry;(2) and therefore, Ry;(2) 2
Rij(v). Hence, there is a Rjj(z) € Ro(w) with z* € Rp(z) N Rj(z),v* € Ry(v) N
Rfi](a;), such that util(z*) £ util(v*). Then, by criterion ul of the util function of M*
(Definition 2.15), either (I) 2* € Rf; (z)\Re,(w) or (II) v* & Ri;(x) N R, (w). Suppose
(I), since 2* € Rf,) () we know that 2* € R («) and thus conclude z* € R, (w). However,
by the initial assumption R[Z]( 2) NRg,(w) = 0 we obtain z* ¢ Rg,(w). Contradiction.
Suppose (II), then since v* € R, ]( r) we infer v* ¢ R, (w). However, Rp;)(v) C Rg,(w).
Contradiction. QED

Lemma 2.16. For each ¢ € L% we have: =1ys, ¢ implies =T1ps, ©-

Proof. We prove the claim by contraposition. Assume [~1ps, . Then, there is a TDS,,-
model M such that M w = ¢ for some w € W. Let M* be the model obtained
from by M (Definition 2.15). By Lemma 2.14 we know M is a TUS,, model. Last, by
Lemma 2.15 we know M", w = = and, so, FTys,, ¢ QED
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As an immediate corollary of the above, we know that the Hilbert-style axiomatization
of TDS,, is complete with respect to the class of TUS,-models (Definition [2.13).

Theorem 2.5 (Weak completeness of TUS,,). For all ¢ € L', if =1us, ¢, then F1ps, ©-

mn’

Proof. Follows from Theorem [2.16 together with Theorem 2.3, QED

Moreover, we now know that the two semantic approaches are equivalent.

Theorem 2.6. For all ¢ € L', |=1ps, ¢, iff ETus, ©-
Proof. Follows directly from Theorems [2.3| and 2.4 together with Lemma 2.16.  QED

In fact, since the function util of Definition 2.13|is defined independently of the relations
R, Ru, and R4g), all of the results in this section also hold for DS, and US,, (including
strong completeness).

Corollary 2.3. For all p € L%, |=ps, ¢ iff Fus, ¢ iff Fps, ¢

Remark 2.3. The atemporal logics US,, and DS,, cannot differentiate between utility
functions that are restricted to moments—such as in Definition |2.15—and those functions
that assign utilities uniformly to complete histories (i.e., where every world on a history has
the same utility). To see this point, consider Murakami’s (2005) observation concerning
US,: “[slince the formal language [...] contains no operators whose interpretation
involves temporal reference |[... ], and thus from a technical point of view, the temporal
relation in utilitarian stit frames can be eliminated when stit formulas and ought formulas
are in question” (p.7). In other words, US,, cannot differentiate between multi- and
single-moment models, cf. (Balbiani et al.,|2008). Since a history of a single-moment
model is just a single world, from the perspective of US,,, the two types of utility functions
yield the same logic. We further investigate this in the next section.

2.4 The Limits of Utilities: Temporal Contrary-to-Duty
Obligations

So far, we have filled a long-standing gap in the literature by providing a temporal
characterization of Deontic STIT logic. Furthermore, in Section 2.3, we showed that
utilitarian semantics that assign utilities to moments is equivalent to the relational
characterization of the logic TDS,,. Furthermore, we observed that the atemporal
characterization of deontic STIT, i.e., DS,,, cannot differentiate between utility functions
restricted to moments and those that assign utilities to complete histories (Remark 2.3).
The latter extends the results by Murakami (2005), who showed that the atemporal
axiomatization of deontic STIT logic cannot distinguish between the following three
semantic characterizations: (a) utilitarian STIT for dominance ought (using the reals); (b)
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utilitarian STIT for optimal ought (using finite-choice models'®), and (c) the two-valued
optimal ought (using binary assignments). Thus, we obtain a class of seven equivalent
semantic characterizations with respect to DS,,. This section formally investigates whether
these equivalences are preserved for the logic TDS,,. We are now in the position to answer
an open question posed by Murakami (2005) and investigate “how various operators for
deontic notions behave and interact in a temporal structure” (p.5). In particular, we
investigate the following claim by Horty (2001):

[Blecause the utilitarian setting allows us to handle reparational oughts [i.e.,
CTD obligations'?] while maintaining a uniform assignment of values to
histories, and because such an assignment seems more natural—we build this
uniformity constraint into our definition of the utilitarian framework. (p.41)

To understand the reasons given by Horty in the above quote, consider the utility
assignment in Figure 2.2 on page 36. At moment Ro(w®), John and Paul are both
obliged to try to work things out. If the two agents act according to their duty, this
eventually yields a utility of at least 3 at moment R(v;). In contrast, if both violate their
obligation and choose not to work it out—i.e., the choices {w", w”}, respectively {w?, w*}—
at Ro(w®), they arrive at a sub-ideal moment R(z;) where the CTD obligation consists
in “getting a little help from their friends”. At this violation state Rg(x;), the CTD
obligation assures the maximum utility of 2 if observed. Although this utility is at Ro(x;)
the highest, it is strictly less than the assured utility of 3 at R(v;) resulting from John
and Paul fulfilling their initial obligation to try to work it out together. Hence, the use
of utilities assigned to histories naturally represents that the CTD situation in Rpo(x;)
is strictly less ideal than the according to duty situation in Ro(v;). We refer to Horty
(2001} Ch.3) for a more detailed discussion.

In this section, we assess the claim made by Horty on page 64/ above. Our conclusion will
be twofold: first, the two-valued utility function—e.g., investigated in (Murakami, 2005)—
causes problems concerning CTD scenarios. Second, the observed equivalence between
different utility functions in the context of DS, is not preserved, i.e., TDS,, is incomplete
with respect to two-valued utility functions assigning utilities to complete histories.
Consequently, our analysis provides a formal argument why only the real/natural numbers
are suitable for Temporal Utilitarian STIT logic. With this, we address Objective [4.

2.4.1 Utilities Assigned to Histories

We first define some preliminaries. In what follows, we use util™ and util” to differentiate
between utility functions that are restricted to moments, respectively histories (the utility
function in Definition 2.13|is a util™ function. For each world w, we define a history as

13Following Horty (2001)), the optimal ought characterizes dominance act utilitarianism proper. The
definition of (a) is a generalization of (b), the latter which is characterized by finite-choice frames.

"Like Governatori and Rotolo (2006), Horty (2001) calls obligations that arise through the violation
of previous obligations ‘reparational oughts’ (cf. CTD-reasoning in Chapter |1).
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the set h(w) = Ru(w) U {w} U Rg(w). It can be straightforwardly observed that each
world is a member of exactly one history and that R¢ forms a strict linear order on h(w)

(Definition 2.4). We refer to temporal utilitarian STIT frames that employ util® functions
as hTUS,,-models.

Definition 2.16 (Frames and Models for hTUS,,). A relational Temporal Utilitarian STIT
frame restricted to histories (for short, hTUS,-frame) is a tuple § = (W, Ro, {Ryli €
Ag},utilh,R[Ag],Rg,RH>, where § satisfies conditions C1-C6 and T1-T6 of Defini-
tion |2.4| together with the following:

U1 util” : W — N is a utility function assigning each world a natural number;

U2 For all w,v € W such that v € h(w), we have util®(w) = util"(v).

A hTUS,,-model is a tuple M = (F,V) where § is a hTUS,,-frame and V is a valuation
function assigning propositional atoms to subsets of W, i.e., V: Atoms — p(W).

The main difference between hTUS,,- and TUS,-models is that the utility function is
restricted to assigning the same utility to all worlds belonging to the same history, i.e.,
U2. In other words, we may say that the utility is assigned to the history itself. The
satisfaction of a £/ formulae on a hTUS,-model is defined as in Definition 2.14.

2.4.2 Example: A Temporal Contrary-to-Duty Scenario

In what follows, we model a CTD scenario using deliberative obligations. There is a
strong conceptual connection between deliberative obligations and CTD reasoning: both
require that obligations can be violated (Governatori and Rotolo, 2006). A deliberative
obligation is defined as:

®%p 1= @ip A O

From the point of view of agency, deliberative obligations ensure that the agent’s choices
are somehow influential to whether the obligation is satisfied or violated. Tautological
obligations are vacuously satisfied and, for that reason, do not classify as deliberative. It
can be straightforwardly observed that ®§l forces at least two available choices for the
agent involved. CTD reasoning likewise assumes the violability of obligations: it deals
with those obligations that hold in scenarios where another obligation is violated. We
discuss an explicitly temporal CTD scenario (see Chapter 1/ for a general introduction),'®

Example 2.4 (A Temporal CTD Scenario). The scenario presented in Example 2.2
1s a temporal CTD scenario. John and Paul are obliged to try to work it out. If

15The standard approach is to take CTD reasoning as an atemporal problem (Hilpinen and McNamara,
2013). Although some CTD scenarios can be adequately addressed in an explicitly temporal language, it
does not provide a uniform solution to CTD reasoning, e.g., see Prakken and Sergot (1996). Since our
aim in this chapter is to develop an explicitly temporal deontic STIT logic, we focus on temporal CTD
scenarios. See Chapter |6 for a discussion of atemporal CTD reasoning.
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one of them fails to comply, a CTD obligation ensues, requiring both agents to get
some help from their friends. Furthermore, if both comply with their initial duty, they
become obliged to thank each another. We assume that all involved obligations are
deliberative obligations. The scenario is graphically presented in Figure 2.2 on page 37
(see Example 2.2 for an explanation of the figure). Observe that of the four successor
moments Ro(vi), Ro(ui), Ro(zi), and Ra(zi) of Ro(w®), three depict CTD moments.
The scenario consists of the following three formulae:

EL. ®;-ltry7j A ®gtry7p;
E2. O(work it_out — ([j]try_j A [p|try_p)) A Owork it_ out;
E3. O(work it_out — F(®?thank7j A ®gthank7p));

E4. O(—work it out — F(®?he1pﬁj A ®%help_p)).

We point out that the irreflexivity of TDS,- and TUS,-frames ensures that the CTD
obligation expressed in |E3 becomes effective strictly after the violation has taken place.
Henceforth, we use Ygx = {E1, |E2, E3|E4} to refer to the above scenario.

Figure 2.2/ provides a consistent representation of g, in the logics TDS,,, TUS,,, and
hTUS,,, where M, w* = Yg, for each a € {v,u, z, x}. Recall that by seriality and irreflex-
ivity, the underlying branching time frame is infinite; therefore, the model graphically
represented in this figure is only partial. Below, we define the model formally for each
semantics.

The Models Satisfying Yg,. Let Agents = {j,p}. We recall that TDS,,-, TUS,,-, and
hTUS,,-models only differ on how ®; is interpreted. Hence, we can uniformly define the
non-deontic elements of these models. We do this first. We start by defining the infinite
set of worlds (forming our domain) together with all moments and choices:

o« W =W,UW,UW, UW,UW, UW where W,, = {w® | @ € {v,u,z,2} and
i€ {1,2,3,4}} and W, = {o; |i € {1,2,3,4}} for each a € {v,u,z,v}. Let
W' ={a] | a€{v,u,z,z}, i€c{1,23,4} and j € N}.

e Ro(w) = W, for each wf € W, Ro(ey) = Wy for a € {v,u,z,x} and i €
{1,2,3,4}, and Rp(a) = {a} for each a € W'.

o Rpyjj(w®) ={wy |1 <i<4yu{w; |1 <4 <4} with a € {v,2} and Rpj(w®) =
{wp |1 <i <4bufw! |1 <0 <4} with a € {u,7}. Rj)(i) = {a1,a3} and
Rijj(aur) = {az, aa} for a € {v,u,z,x} and i € {1,3} and k € {2,4}.

o Rpj(w) ={wy |1 <i<4}u{w)|1<d <4} with o € {v,u} and Ry (w®) =
{wi |1 <i<4pu{w! |1 <i<4) with a € {z,7}. Ryp(ai) = {a1,02} and
Rip(ar) = {az, as} for a € {v,u,z,z} and i € {1,2} and k € {3,4}.
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s Rpj(a) = Ry (a) = {a} for each a € W' 16

o Forall w € W we define Ri4g)(w) = N;cagents Rjij(w)-
We define the temporal structure over W as follows:

o First, let RE = {(w¥, i) | @ € {v,u, 2,2} and i € {1,2,3,4}} U {(a,0}) | €
{v,u,z,x},i € {1,2,3,4}}U{(a§,af+1) |a € {v,u,z,x},i€{1,2,3,4}, and j € N}.
We define Rg as the transitive closure of R¢.

* Ru={(a,p) | (8,a) € Re}

Let Atoms = {work_it_out,try_ j,try_ p,help j,help p,thank j,thank p}, the
valuation of atoms is defined as:

o V(work it out)={w} |1<i<4}, V(itry j)={wd|aec{v,z}and1<i<
4}, V(try_p) ={wf | a € {v,u}and 1 <i <4}, V(help j)={a; | a € {u, z,x}
and i € {1,3} }, V(help p) ={ei | a € {u,z,2} and i € {1,2} }, V(thank j) =
{vi | i€ {1,3} }, V(thank p)={v; | i€ {1,2} }.

Furthermore, each util” is a util™ function by Definition 2.16. Therefore, it suffices to
define a TDS,,- and hTUS,,-model (the latter being a TUS,, model too).

e For the TDS,, interpretation of Yg,:

Re;, = W U{w | a € {v,z} and 1 <i <4} U{a; | a € {v,u,z,2} and i € {1,3}}.
Re, = W U{w | a € {v,u} and 1 <i <4}U{a; | @ € {v,u, 2,2} and i € {1,2}}.

e For the hTUS,, interpretation of Yg:

For each o € {a € h(v;) | 1 < i < 3}, util®(a) = 4. For each a € h(vy), util’(a) = 3.
For each o € {a € h(;) | B € {u, 2,2} and 1 < i < 3}, util®(a) = 2. For each
ac{ach(By)| B e {uzz}}, util(a)=1.

It can be straightforwardly checked that the above defines a TDS,-, a TUS,-, and a
hTUS,,-model. We point out that util” satisfies both U1 and U2, and thus it is also a
util™ function. Furthermore, both utility functions range over the natural numbers.

One can likewise define a two-valued utility function util”—ranging over {1,0}—for the
TUS,,-model, while preserving satisfiability of ¥g,. Namely, for each individual moment,
one assigns 1 to each world in an optimal choice and 0 otherwise. Intuitively, the reason
is that we can reset the utility assignment for each moment occurring in the tree. We
now discuss the behavior of binary functions in the context of util®.

16This clause defines the infinite continuation of each history with single-world moments.
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2.4.3 The Problem with Two-Valued Utility Functions

Murakami (2005)) showed that the axiomatization of atemporal deontic STIT logic (cf.
DS,,) is sound and complete for various types of utility functions (see page 64). Hence,
DS,, is not expressive enough to distinguish between these functions. This includes the
two-valued utility function, assigning either 0 or 1 to each history. In this last section,
we show that the temporal TDS,, is incomplete with respect to the class of hTUS,,-frames
using a binary util” function.

We start with a general observation. There are two limiting cases in the two-valued
approach to hTUS,: (1) at a moment where all histories passing through the moment
have a utility of 1 every obligation becomes vacuously satisfied by definition—in such a
scenario, we have ®;p iff Jp—and every choice for each agent will ensure all optimal
outcomes. The same reasoning applies to moments where (1) all histories passing through
that moment have a utility of 0.'7| By assigning utilities to complete histories (Horty,
2001)), in the case of (f) and (i), each obligation holding at a future moment will be
vacuously satisfied. Namely, as one progresses in time, the set of histories passing through
a moment can only decrease or stay the same, and therefore the assigned utilities will
remain 1 for each future moment in the case of () and will remain 0 in the case of (}).
That all obligations are vacuously satisfied at such moments means that no obligation can
be violated. This also implies that at such moments there are no deliberative obligations
possible. Consequently, contrary-to-duty reasoning becomes impossible at these moments
because CTD scenarios require the possibility of violating an obligation.

As argued above, in order to reason with CTD scenarios in temporal utilitarian STIT
logics, we need to ensure that obligations can be violated. For that reason, we consider
deliberative obligations. For an obligation ®%¢ to hold, there exists a choice that does
not guarantee p—i.e., (i)=p—and, by Definition 2.14, the latter choice must be strictly
dominated by  choices. In the binary setting, this means that for all deontically optimal
choices, there is at least one outcome with a strictly higher utility: in the case of a
two-valued util” function, this utility must be 1. Unfortunately, this fact has the drawback
that at such moments at least one of the following two statements holds:

S1 All histories in the intersection of all agents acting in accordance with their duty
have a utility of 1;

S2 All histories in the intersection of all agents violating their duty have a utility of 0.

Relative to statements S1 and S2, reconsider the scenario of John and Paul in a two-agents
two-choices setting where ®?try7j A ®gtry7p. Figure 2.3 illustrates the only three
two-valued utility assignments possible for satisfying these two obligations. We argue that
all three assignments are problematic. In what follows, with the “impossibility of future
CTD scenarios”, we mean that all (future) obligations will be vacuously satisfied from

"The observation also applies to moments where all intersections of choices of agents contain both 1
and 0. Nevertheless, this observation is not needed for the argument made in this section.
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Figure 2.3: The only three scenarios (i)-(iii) for which [j]%ry_j and [p]%try_p are
satisfiable on a two-agent two-choice TUS,-model. w; denotes an arbitrary non-empty set

of worlds, for 1 < ¢ < 4. Choices of j are vertically presented, and those of p horizontally.

The symbol Vk at w; with @ € {1,2,3,4} means that every history h(w;) is assigned value
k, and Jk at w; means that some history h(w;) going through the choice intersection is
assigned k, for k € {0,1}. Deontically optimal choices are shaded and darker shaded
when overlapping. At all Vk outcomes with &k € {0, 1}, all obligations will be vacuously
satisfied forever onward, and so CTD reasoning becomes impossible.

that moment onward. Sub-figure (i) implies the impossibility of future CTD reasoning in
all cases in which at least one agent satisfies the obligation, i.e., in those cases, all future
obligations will be vacuously satisfied. Sub-figure (ii) implies that there are no future

CTD scenarios possible in each case witnessing at least one agent violating his obligation.

Last, sub-figure (iii) indicates that future CTD scenarios can only occur in those cases
when one of the agents satisfies his obligation provided that the other is in violation. One
may check the exhaustiveness of these scenarios by inspecting the semantic interpretation
of ®?try7j A ®gtry7p. For all other utility assignments, contradictions ensue. The
above analysis generalizes to an arbitrary number of agents with an arbitrary number of
choices. (Observe that Figure 2.3|satisfies S1 and S2.)
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In Figure 2.3, we see that for each of the three scenarios in at least one future moment,
deliberative obligations are impossible, i.e., whenever the future moment satisfies V1 or
V0. Consequently, the temporal CTD scenario of Example [2.4 cannot be satisfied on any
hTUS,,-model adopting a two-valued utility function. In other words, Yg, is unsatisfiable.
However, Y, is satisfiable with respect to the class of TDS,,- and TUS,,-models, as shown
on page 66.

Theorem 2.7. The Hilbert-style axiomatization of TDS,, is incomplete with respect to
the class of hTUS,-frames with a util® function mapping histories to {1,0}

Proof. By Theorem 2.3 TDS,, is sound and complete with respect to the class of TDS,,-
frames. Recall Xg, = {E1.E2|E3|E4}. The formula A X, is TDS,-satisfiable (page 66).
For any hTUS,,-model with a binary utility function, we know that if E1| is satisfiable
either S1 or S2 holds. Therefore, at least one future moment contains only vacuously
satisfied choices. Thus, either E3| or |[E4| cannot be satisfied, and so A Xgx is unsatisfiable.
Hence, - A\ Xy is a valid formula of two-valued hTUS,-models and, since - A X, is
not TDS,,-derivable, TDS,, is incomplete with respect to the class of two-valued hTUS,,-
frames. QED

How should we interpret the incompleteness result of Theorem 2.77 Murakami (2005)
showed that atemporal deontic STIT logics are indifferent with respect to utility as-
signments from {0,1} and N (or R for that matter). Although utility functions relative
to moments come with their own challenges (Horty, |2001), this section demonstrated
that two-valued utility functions are unsuitable for deliberative agency in the context
of explicit temporal reasoning. The results in this section provide strong support for
adopting natural or real numbers for temporal utilitarian STIT logics, e.g., as proposed
by Horty (2001]).

2.5 Related Work and Future Research

Decidability. Decidability of STIT logics has been extensively investigated. Basic
STIT logic was shown decidable by Xu (1994b). Xu (1994a) also showed the decidability
of a deliberative STIT logic that takes the deliberative STIT modality as a primitive
instead of a defined modality. An alternative approach to the decidability of these logics
was given by Balbiani et al. (2008]), who also showed that the settledness modality
O can be omitted from the language by defining it in terms of choice operators. A
proof-theoretic decidability result—including proof-search algorithms and automated
counter-model extraction—was developed for basic STIT logic in (Lyon and Berkel, [2019).
A similar system was introduced by Negri and Pavlovi¢ (2021). Group STIT logics,
where choice is considered not only in relation to individual agents but also in relation to
arbitrary groups of agents, was shown undecidable by Herzig and Schwarzentruber (2008).
Furthermore, Murakami (2005) provided a semantic proof showing that Utilitarian STIT
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logic is decidable. A proof-theoretic proof of the decidability of the equivalent logic DS,,—
including proof-search algorithms and automated counter-model extraction—was given by
Lyon (2021).'® Last, Ciuni and Lorini (2018) investigate decidability of various temporal
extensions of basic STIT logic using different temporal semantics. The decidability of the
Temporal STIT logic (Lorini, 2013) on which TDS,, is based is still an open question. In
light of the above, the following proves an interesting future research direction:

Open question 2.1. Is TDS,, decidable? If not, is there an alternative axiomatization of
Temporal Deontic STIT logic, in the spirit of (Ciuni and Lorini, 2018), which is decidable?

Other Temporal STIT Logics. The logic TDS,, is based on the temporal axiomati-
zation of BT4+AC frames as developed by Lorini (2013). However, this is not the only
temporal STIT logic in the literature. A central feature of the basic STIT operator [i] is
that it is instantaneous, i.e., referring to choice at the present moment. The logic of XSTIT
contains a non-instantaneous STIT-operator explicitly affecting next states. Introduced
by Broersen (2011b)), the logic is motivated by the observation that affecting next states
is a central aspect of agency in computer science. Moreover, extensions of the logic
XSTIT have been employed to investigate the concepts of purposeful and voluntary acts
and their relation to different levels of legal culpability (Broersen, [2011a). The logic was
initially proposed for a two-dimensional semantics referring to both states and histories.
An alternative semantic characterization of XSTIT—using relational semantics—was
provided in (van Berkel and Lyon, 2019b); there, it was shown that the two semantic
approaches are equivalent. Sequent-style proof systems for temporal STIT logic and
XSTIT logic were likewise given in (van Berkel and Lyon, 2019b). Next, the initial STIT
operator proposed in the seminal work of Belnap and Perloff (1988) is also inherently
temporal. The operator is called the Achievement STIT (for short, ASTIT). The main
characteristic of this logic is that it refers to both the past and alternative courses of
events. In brief, an ASTIT formula [i]%p expresses that “through a choice in the past
A holds at the present moment (and was guaranteed to hold), even though the agent’s
alternative choices at that moment would not have ensured A (after passing of the same
interval of time)” (where A is a formula). The logic was shown complete by Xu (1995).

Epistemic extensions of temporal STIT logics were introduced and analyzed by Broersen
(2011a)) and Broersen (2011b)). Furthermore, Broersen (2011a)) discusses deontic modalities
in the context of epistemic XSTIT. There, the obligation operator is taken as a defined
operator in the Andersonian tradition (Anderson and Moore, [1957)), i.e., obligations are
reduced to choices leading to sanctions (or violations). Lorini (2013)) discusses normative
concepts in the context of Temporal STIT logic via adopting an Andersonian reduction of
obligations to choices and violations. In particular, the reduction was adopted to reason

18 Alternative proof systems for STIT logic are provided by Arkoudas et al. (2005), who introduce a
natural deduction system for a deontic STIT logic (without soundness and completeness results), and
by Olkhovikov and Wansing (2018) and Wansing (2006), who propose tableaux systems for multi-agent
deliberative STIT logics.
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about commitments. A similar reductionist approach was adopted by Bartha (1993)
and Xu (2015) in atemporal STIT settings. We refer to Chapter 4 and Chapter 5 for an
extensive discussion of Andersonian approaches to deontic logics.

It remains to be determined whether TDS,, is sound and complete with respect to
Temporal Utilitarian STIT semantics employing utility functions assigning naturals to
complete histories. Although two-valued utility functions yielded the incompleteness
result in Theorem [2.7, we conjecture that the following holds true:

Conjecture 2.1. The logic TDS,, is weakly complete for the class of TUS,, -frames.

Last, this chapter did not deal with important themes such as validity time of obligation
versus reference time of obligation, and maintenance versus achievement obligations
(Broersen and Torre, 2011). The developed Temporal Deontic STIT logic may also be
used in future work to investigate these topics.

Conditional Obligations for STIT logics. The deontic modalities used in this
chapter are monadic, i.e., unary modal operators. Several extensions of atemporal STIT
have been introduced for dealing with conditional oughts. We discuss these briefly here.
The earliest account of conditional obligations is given by Bartha (1993). There, different
formalizations of conditional obligations are discussed in light of deontic paradoxes, such
as CTD scenarios. The conditional is interpreted with the use of material implication.
Horty (2001)) introduces a notion of choice conditioned on a proposition. The dominance
relation over choices (cf. Section 2.3) can also be conditioned on such a proposition.
Subsequently, a ternary modality O([i]p /1) is introduced, roughly expressing that “under
the condition that 1 is the case, the agent i ought to see to it that ¢ holds”. Last, Sun
and Baniasadi (2014)) extend group STIT logic (where choice ranges over arbitrary groups
of agents) with a monadic and a dyadic group obligation. Their account is based on
Utilitarian STIT semantics. The resulting logic is applied to the Miners Paradox (Kolodny
and MacFarlane, [2010). Also, see the work of Abarca and Broersen (2019) for an analysis
of the Miners Paradox in the context of epistemic deontic STIT logic.

Since the adaptation of conditional obligations has proven to be a fruitful approach for
dealing with deontic paradoxes in general and (atemporal) CTD scenarios in particular
(Hilpinen and McNamara, 2013)), it is left to future work to analyze the logical behavior
of such obligations in the context of an explicitly temporal STIT setting.

Open question 2.2. What are the logical properties of expanding TDS,, with conditional
obligations?

The Logic of Bringing it About That. A formalism similar to STIT is the logic of
‘bringing it about that’ by Elgesem (1997). As for STIT, Elgesem’s logic represents agency
through a canonical form, namely, “bringing about that” (which is considered by Belnap
and Perloff (1988) as a synonym for seeing to it that). Elgesem stresses problematic
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aspects of using normal modal operators for capturing agency—such as those employed
in basic STIT logic—due to, e.g., necessitation. Goal-directed behavior is a central notion
for Elgesem’s theory of agency. This behavior ensues when the agent causally contributes
to attaining a desired result, the latter of which must be non-trivial and non-accidental.
Furthermore, it is a counterfactual notion ensuring that the result is due to the agent’s
capacity and not an accidental by-product. Non-triviality and non-accidentality warrant
the use of non-normal modal operators (Chellas, [1980)). Elgesem’s (1997) logic contains
various primitive non-normal modal operators: e.g., the agent-dependent “Does”-modality.
The logic (extended with coalitions) was shown to be sound and complete with respect
to bi-neighborhood semantics and hyper-sequent systems (Dalmonte et al., 2021). We
point out that in Chapter 3, we provide a non-normal modal characterization of the
deontic modality ®; in the context of STIT for reasons similar to those in (Chellas, |1980;
Elgesem, 1997)).

In this chapter, we filled a long-standing gap in the STIT literature by providing a
sound and weakly complete Temporal Deontic STIT logic (Objective 1). We showed
that this STIT logic can be semantically characterized using only relational semantics,
i.e., bypassing both the traditional BT4+AC semantics and the utilitarian STIT seman-
tics (Objective [2). We showed how the resulting semantics can be truth-preservingly
transformed into the traditional utilitarian STIT semantics of dominance ought (Horty,
2001) (Objective 3). What is more, we formally investigated the logical consequences
of adopting an explicitly temporal language in the context of deontic STIT and proved
that the two-valued function, ranging over histories, is unsuitable for temporal CTD
reasoning, yielding incompleteness with respect to TDS,, (Objective 4).
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CHAPTER

Ought Implies Can

The fields of moral philosophy and deontic logic gave rise to various metaethical principles.
Metaethical principles are requirements that any appropriate ethical theory must ideally
satisfy. They are principles of a higher generality than the principles and rules within a
given ethical theory. Intuitively, one may differentiate the two as follows: On the one
hand, particular ethical rules, such as “one should not lie”, are about the normative status
of specific behavior. They are action-guiding and restricted to particular action-types
(McConnell, 1985). Metaethical principles, on the other hand, such as “an ethical theory
must be consistent”, apply independently of a given action-type and are supposed to
hold for any ethical theory.!| Their generality puts them on the same level as axiom
schemes. Following McConnell ((1985)), metaethical principles serve as preconditions that
ethical theories should ideally satisfy: “[i]t is when a view [ethical theory] fails to satisfy
several (or many) such conditions that we begin to feel confident placing it outside the
realm of the moral” (p.307). Examples of metaethical principles that play a central
role in philosophy and the logical analysis of normative reasoning are: “no vacuous
obligations” (von Wright, [1951)), “deontic contingency” (Anderson and Moore, 1957,
“deontic consistency” (Marcus, 1980), “(im)possibility of deontic dilemmas” (Conee, 1982)),
and the principle of “alternate possibilities” (Copp, 2017). Yet, the most prevalent and
extensively discussed metaethical principle is “Ought implies Can”.

This chapter is about Ought implies Can (OiC, for short). In its general formulation,
the principle stipulates that what ought to be done, can be done. One of the allures
of OiC is that it releases agents from alleged duties that are impossible, strenuous, or
over-demanding (Dahl, 1974; McConnell, |1989)). To see this point, consider OiC in
contraposition: “what cannot be done, an agent is not obliged to do.” In other words,
0iC delimits the possible actions to which an agent can be normatively bound. It ensures
this by taking into account the agent and the circumstances in which the agent finds

'For a discussion of the normative status of metaethical principles see (McConnell, |1985)).
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herself when reasoning about obligations and norms. Hence, inferences about obligations
are influenced by what ‘can be done’.

Unfortunately, there is no clear consensus on the philosophical and logical interpretation
of OiC. The principle has a long history within moral philosophy and can be traced
back to, for example, Aristotle (The Nicomachean Ethics, translated by Ameriks and
Clarke 2000, VII-3), and to the ancient Roman legal principle “impossibilium nulla
obligatio est” (Vranas, 2007)). Usually, OiC is accredited to the renowned philosopher
Immanuel Kant. For instance, in the Critique of Pure Reason, Kant writes that “of
course the action must be possible under natural conditions if the ought is directed
to it” (translated by Guyer and Wood 1998, A548/B576). While earlier thinkers such
as Aristotle and Kant only discussed OiC implicitly, it became an explicit subject of
investigation in the twentieth century. Aside from debates on whether OiC should be
adopted at all (Graham, 2011} Saka, 2000), most works are about which reading of the
principle should be endorsed. In particular, most discussions revolve around the right
interpretation of ‘can’. Determining the right interpretation of ‘can’ is crucial for systems
that adopt OiC since it influences the degree to which an agent can be burdened with and
relieved from duties. Notable positions have been taken up by Hintikka (1970]), Lemmon
(1962), Stocker (1971)), von Wright (1963a), and, more recently, Vranas (2007).

The central aim of this chapter is to enhance our understanding of OiC using tools from
formal logic. We focus on frequently recurring readings from authors that are—in our
opinion—central to the debate. Despite the apparent relationships between some of the
considered OiC readings, a precise taxonomy of their logical interdependencies is only
achievable through a formal investigation of their corresponding logics. Such a logical
taxonomy is still missing. Although OiC is one of those properties commonly taken as
‘undisputed’ in the field (van der Torre, 1997) there is a severe discrepancy between
the formal treatment of OiC and its philosophical counterpart, which it aims to model.
This chapter extends the preliminary results obtained in (van Berkel and Lyon, 2021
and fills this gap. To better understand OiC, we develop deontic logics for various OiC
interpretations. In particular, we employ the formalism of STIT (Belnap and Perloff,
1988]) since it allows us to model obligations and various agential concepts such as ability.

Objective 1. Develop sound and complete Deontic STIT logics for each prominent
reading of OiC' from the philosophical literature.

The upshot of employing logical methods is that we can formally determine which
interpretations of OiC logically imply others and which readings are logically independent.

Objective 2. Use the developed Deontic STIT logics to determine the logical relations
between the various readings of OiC, thus yielding a formal taxonomy of OiC.

Additionally, we are interested in using the obtained OiC logics to acquire a better
understanding of the relations between other metaethical principles and OiC.



Objective 3. Employ the developed logics for OiC and determine the logical relations to
other metaethical principles in the literature.

Last, we are interested in reasoning with the obtained OiC logics and determining how
different interpretations of ‘can’ influence inferences about obligations.

Objective 4. Enhance the developed OiC logics with reasoning principles that take into
account what ‘can be done’ in drawing inferences about obligations.

Contributions. In this chapter, we address these four objectives by introducing a class
of logics for the analysis of Ought-implies-Can in STIT. We refer to these logics as OS,,
(with n referring to the number of agents in the language). We briefly discuss the five
main contributions made in this chapter.

First, we discuss, compare, and formalize ten OiC principles collected via an extensive
analysis of the philosophical literature (Section 3.1). To the best of our knowledge, such
a classification of OiC principles is novel.

Second, the intrinsically agentive setting provided by the STIT paradigm enables us
to conduct a fine-grained analysis of the various renditions of OiC. The traditional,
utilitarian approach to deontic STIT logic by Horty (2001)) enforces specific properties
on its obligation operators, which includes an axiom for Ought implies Can (see axiom
All of DS,, in Chapter 2). However, most philosophical readings of OiC are either
weaker or stronger than the OiC principle of traditional deontic STIT logic. This makes
it necessary to modify and fine-tune the framework. In this chapter, we take a more
modular approach to deontic STIT logic by adopting possible world semantics instead of
utility functions (cf. Chapter 2)). In particular, we adopt a non-normal modal approach
to obligations, using neighborhood semantics (Chellas, [1980). We provide sound and
complete axiomatizations for the entire class of deontic STIT logics accommodating the
various kinds of OiC principles (Sections 3.2 and |3.3)).

Third, we use the resulting deontic STIT logics to obtain a formal taxonomy of the OiC
readings discussed. We classify the ten OiC principles according to the respective strength
of the underlying STIT logics in which they are embedded (Section 3.4). Furthermore, we
determine which logics subsume each other. This gives rise to what we call an endorsement
principle. Namely, it demonstrates which endorsement of which OiC readings logically
commits one to endorse other OiC readings (from the vantage of STIT). The logics are
also applied to show the mutual independence of various OiC readings.

Fourth, we compare the variety of OiC with other metaethical principles (Section 3.5).

The results are twofold: First, we determine which readings of OiC imply or are logically
implied by other metaethical principles. Second, we show under which metaethical
principles specific differences between OiC readings disappear. We argue that most
metaethical principles are significantly related to OiC. Similar to the endorsement
principle, we determine which metaethical principles force one to adopt particular
interpretations of OiC and vice versa (in the context of STIT).
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Last, to determine the relations between different OiC readings as accurate as possible, we
must abstain from adopting other deontic reasoning properties (such as the aggregation of
obligations). A common objection to adopting a non-normal modal approach to deontic
logic is that certain intuitively desirable inferences are lost, and the logic in question
becomes too weak (Van Fraassen, 1973; Horty, 1997). To satisfactorily address this
objection, we introduce several extensions of the developed class of deontic STIT logics
that reintroduce deontic reasoning principles that simultaneously take into account what
‘can be done’ (Section [3.5). Among others, we enhance the developed deontic STIT logics
with a restricted form of deontic aggregation conjoining only consistent obligations.

Differences. The present chapter is a continuation of the work in (van Berkel and Lyon,
2021). In that work, we used normal modal operators to characterize obligations and
left the axiomatization of various deliberative OiC principles for future work. In the
present chapter, we adopt a non-normal modal approach which enables the sound and
complete axiomatization of all ten formalized OiC principles in (van Berkel and Lyon,
2021)). Furthermore, by adopting a non-normal modal approach, we can provide a more
fine-grained analysis of OiC. This approach led to the following novel contributions:

e We provide an alternative, more accurate, formalization of the OiC principle ‘ought
implies logically possible’ (Section 3.1).

o We semantically characterize the obligation modality using neighborhood semantics
instead of relational semantics (Section 3.2) and show soundness and completeness
of the entire class of logics (Section |3.3).

e The logical taxonomy of OiC principles is exhaustive for all ten principles, including
the deliberative readings of OiC (Section 3.4).

o We discuss other metaethical principles in the context of OiC and extend the class
of logics with several intuitive deontic reasoning principles (Section 3.5).

As a final remark, in (van Berkel and Lyon, 2021)), we used (labeled) sequent-style calculi
(Negri, 2005) instead of axiomatic systems. The upshot of that approach is that we can
potentially use proof-search methods in the context of deontic STIT logic. Although
some results were obtained in (Lyon and Berkel, |2019; Lyon, 2021), it is left to future
work to develop calculi for the logics of this chapter.

Outline. We analyze ten readings of OiC in Section |3.1. In Section 3.2, we introduce
the class of OS logics for the analysis of Ought Implies Can in STIT. We prove soundness
and completeness for all the logics of this class in Section [3.3. After that, we analyze the
logical taxonomy of OiC in Section 3.4, In Section 3.5, we extend these logics with other
metaethical principles and several deontic reasoning principles. Related work and future
research are addressed in Section 3.6.
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3.1 Ought Implies Can: Ten Interpretations

Disagreement on OiC can be best understood in terms of the degree to which an agent
must be burdened with or relieved from duties (Vranas, [2007)). Such discussions revolve
around the appropriate interpretation of the terms ‘ought’, ‘implies’, and predominantly,
‘can’. In what follows, we take ‘ought’ to represent an agent-dependent obligation and
take ‘implies’ to stand for material implication. We refer to the works of van Ackeren
and Kiihler (2015) and Vranas (2007) for a detailed discussion of the terms ‘ought’ and
‘implies’. In this section, we introduce and discuss ten important interpretations of OiC.
We focus on different interpretations of the term ‘can’ and roughly identify four categories:
‘can’ as possibility, ‘can’ as ability, ‘can’ as violability, and ‘can’ as control. These four
concepts give rise to eight OiC principles. We end this section discussing two additional
OiC principles that receive a normative reading of the term ‘can’.

Throughout this section, we introduce logical formalizations of the various OiC readings.
We employ the (atemporal) deontic STIT language £& (Definition 2.1, page [29) and
refer to Chapter [2 for a detailed discussion of the language. We briefly recall some
notation: we let ¢ stand for an arbitrary formula from £%. The connectives —, A,
and — are respectively interpreted as ‘not’, ‘and’, and ‘implies’. Let T and L denote
‘tautology’, respectively ‘contradiction’. Let [i] be the basic STIT operator expressing
“agent ¢ sees to it that” (some proposition holds). Alternatively, we take [i]p to express
that “agent ¢ exercises a choice that ensures ¢”. We use the operator [] to denote that
(some proposition) “is currently settled true”. Alternatively, we read a formula Oy as
“p is realized at the present moment”/?| The main use of [ is to discern between those
states of affairs that are realizable through an agent’s choice and those that are realized
irrespective of the agents’ choices. We take ¢ as the dual of [J, denoting that some state
of affairs is currently realizable.

Last, the deontic modality ®; is read as “it ought to be the case for agent ¢ that”. We
stress that OiC is essentially agentive but does not necessarily refer to choice in particular.
For this reason, we adopt “it ought to be the case for agent i that” instead of the stronger
“agent 7 ought to see to it that”. The latter reading corresponds to the quasi-agentive
reading of obligation, as advocated by Belnap and Perloff (1988) and adopted by Horty
(2001). In Section 3.6, we investigate the logical consequences for OiC when adopting
the quasi-agentive reading of obligation.

Ought implies Logical Possibility. The first principle, one of the weakest interpreta-
tions of OiC, merely requires the content of an agent’s obligation to be non-contradictory.
It is phrased and formalized as follows:

What is obligatory for an agent, is logically consistent: ®;¢p — = ®; L (OiLP).

20ur focus is on atemporal readings of OiC and, therefore, it suffices to refer to moments as isolated
events at which agents exercise choices. See Section [3.2] for formal details and Section 3.6/ for a discussion
of temporal readings of OiC.
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OiLP expresses that if anything is obligatory, then there is no obligation to bring about
what is (logically) impossible, i.e., = ®; L. Within the philosophical literature, this
interpretation is referred to as “ought implies logical possibility” (Vranas, 2007), and the
principle is often equated with the “deontic consistency” principle, e.g., see (van Eck,
1982; Lemmon, [1962).° As a minimal constraint on deontic reasoning, the principle is a
cornerstone of deontic logic (Anderson and Moore, |1957; Hilpinen and McNamara, 2013}
von Wright, |1951)). Still, some have repudiated it, e.g., Lemmon (1962)). In Section 3.5,
we discuss Lemmon’s argument and pinpoint what, we believe, goes awry in his rejection

of OiC.

Remark 3.1. OiLP ensures that each obligatory ¢ is logically consistent and, consequently,
not equivalent to L. To see this point, let Q;p be an obligation and suppose ¢ 1is
inconsistent. Then, ¢ = L and so we infer ®; L. This inference is valid in any (non-)
normal modal logic by the validity of the rule of congruence (Blackburn et al., |2004;
Chellas, |1980). We observe that the formalization of OiLP differs from the one given in
(van Berkel and Lyon, |2021)). There, we formalized OiLP as (1) ®; ¢ — = ®; ~p. In
fact, for the deontic STIT logic DS,, from Chapter|2 these two formulae are equivalent.
The equivalence is due to the normality of the ®; operator. In this chapter, we adopt
a non-normal modal approach to the operator ®;, which allows us to introduce certain
refinements in how we axiomatize OiC. In a non-normal modal logic setting OiLP and
(1) are not equivalent. We come back to this in Section |3.5.

Ought implies Realizability. The next interpretation refers to what is realizable at
a given moment. It is formulated as follows:

What is obligatory for an agent, is realizable: ®;p — Qv (OiRz).

This reading of OiC requires that everything which is obligatory is realizable at the moment
in which the agent must choose. Consequently, that which is obliged is compatible with
some of the agent’s choices. Nevertheless, OiRz remains an agent-independent principle in
the following sense: Suppose I am obliged to open the window. Then, OiRz requires that
an open window is currently realizable—e.g., it is not jammed—even though I cannot
open it myself due to being tied to the chair. Arguably, the agent-independent readings
of ‘can’ in OiLP and QiRz are too weak to capture the more common philosophical
interpretations of OiC.* For instance, although a moon eclipse is both logically possible
and realizable, it should not be considered something an agent ought to bring about. For
this reason, most interpretations of ‘can’ involve the agent explicitly.

3We point out that von Wright (1981) calls OIiLP ‘Bentham’s Law’ and remarks that Mally already
adopted it in what is known as the first attempt to construct a deontic logic (Lokhorst, [1999)).

“Hilpinen and McNamara (2013) refer to OiC as ‘Kant’s law’ and classify OiLP and OiRz as weak
versions of this law. However, it is open to debate which reading of OiC (if any) Kant would endorse,
e.g., see (Kohl, 2015; Timmermann, 2013).
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Ought implies Ability. The following OiC reading enforces an explicitly agentive
precondition on obligations:

What is obligatory for an agent, can be seen to by the agent: ®@;p — Oli]e (OiA)

In other words, OiA requires the agent’s ability to guarantee (through choice) the
realization of that which is prescribed.’ The concept of ability has many formulations:
for example, it may denote general ability, current ability, potential ability, learnability,
know-how, and even technical skill.’| In what follows, we take ‘ability’ to mean that the
agent in question can guarantee a certain outcome by exercising a choice at the current
moment.

Observe that OiA is the principle implied by Horty’s (2001) utilitarian deontic STIT
logic (discussed as US,, in Chapter 2). However, this OiC reading does not completely
capture the notion of ‘ability’ as predominantly encountered in the philosophical literature.
That is, OiA merely requires that what is prescribed for the agent can be guaranteed
through one of the agent’s choices but does not exclude vacuously satisfied obligations.
Namely, agents can still be obliged to bring about inevitable states of affairs. Think of
an obligation to realize the tautological state of affairs “the door is open or the door is
not open”. In the context of obligations, philosophical notions of ability often exclude
such consequences by strengthening the concept of ability with either (i) the possibility
that the obligation may be violated, (ii) the agent’s ability to violate the obligation (i.e.,
the agent may refrain from fulfilling her duty), (iii) the right opportunity for the agent
to exercise her ability, or (iv) the agent’s control over the situation (i.e., the agent’s
power to decide over the fate of that which is prescribed). In a deontic context, the
above four notions ensure that obligations range over states of affairs that are capable of
being otherwise. According to Horty and Belnap (1995), the latter is a precondition for
deliberative agency. For this reason, we refer to the following OiC interpretations—based
on (i)-(iv)—as deliberative.

Ought implies Violability. This principle requires the violability of an obligation,
which means that the complement of what is prescribed must be realizable.

An agent’s obligations are violable: ®;p — O—¢p (OiV)

Governatori and Rotolo (2006|) argue that for obligations to be meaningful at all, they must
be violable. Namely, since obligations provide reasons to act and tautological obligations
are gratuitously observed, the latter do not provide any reasons for behaving in one way

®Similarly, von Wright (1968, p.50) distinguishes between human and physical possibility (cf. OiA
and OiRz, respectively), both implying logical possibility (cf. OiLP) as a necessary condition.

See the works of Broersen (2011b)), Brown (1988), Goldman (1970), and von Wright (1963a)) for
various notions of ‘ability’. We refer to McConnell (1989)), Stocker (1971)), and Vranas (2007) for discussions
on the related notion of ‘inability’.

81



3.

OuGHT IMPLIES CAN

82

rather than another. Hence, tautological obligations are meaningless. The principle OiV
excludes such meaningless obligations. That is, given OiV, a tautological obligation ®; T
would imply the possibility of a contradiction, i.e., ¢0_L (where L := =T). Furthermore,
OiV strongly relates to the metaethical principle of “no vacuous commands,” which
ensures that neither tautologies are obligatory nor contradictions are prohibited (von
Wright, |1963a)). We discuss the latter in Section [3.5. Just as for OiLP and OiRz, violations
are not necessarily agent-dependent: a violation might still arise through causes external
to the agent. For instance, the window that ought to be opened by me might be closed
through a strong gust of wind.

Ought implies Refrainability. The following principle strengthens the notion of
violability by making it an agentive matter:

Obligations are deliberately violable by the agent: ®;¢ — O[i]-[i]e (OiRef).

This OiC reading requires that the agent can refrain from satisfying her obligation. In
the jargon of STIT, refraining from fulfilling one’s duty requires “an embedding of a
non-acting within an acting” (Belnap et al., 2001, p.43). That is, it requires the possibility
to “see to it that one does not see to it that” (some proposition holds). However, the
two principles OiV and OiRef may be insufficient as OiC principles when that which is
obliged is not possible in the first place.” For instance, it is not difficult for an agent to
violate an obligation to create a moon eclipse. We often find the ideas from the previous
five OiC interpretations combined to avoid such cases. We discuss three such principles.

Ought implies Opportunity. This principle combines the two interpretations of ‘can’
as ‘realizable’ and ‘violable’. The result is that obligations range over contingent states
of affairs:

What is obligatory for an agent, is contingent in nature: Q;p — (O A O—¢p) (0i0).

The two conjuncts in the consequent of OiO constitute what is referred to as the
opportunity for an agent to actively fulfill her duty; see (Vranas, 2007; von Wright,
1963a)). Accordingly, we use the terms ‘opportunity’ and ‘contingency’ interchangeably.
We point out that OiO does not state that obligations are contingent but only that
what is prescribed by the obligation is a contingent state of affairs. Like previous terms,
‘opportunity’ and ‘contingency’ have several readings in the literature (Copp, 2017; Dahl,

"We conjecture that this is why Vranas (2007) states that OiRef is strictly not an OiC principle.
Furthermore, observe that violability and refrainability strongly relate to the metaethical principle of
“alternate possibility,” which states that an agent is morally culpable if it could have acted otherwise.
Due to the involvement of auxiliary concepts such as culpability, we will not further discuss this principle
in this chapter. We refer to Copp (2017)) and Yaffe (1999) for an introduction.
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1974; Vranas, 2007; von Wright, [1951). What these readings have in common is that they
refer to the propriety of the circumstances in which the agent must fulfill her duty. At a
minimum, both opportunity and contingency require that the prescribed state of affairs
is manipulable, i.e., the state of affairs can become true or false.® This interpretation of
0iO relates to what von Wright (1963a) has in mind when he talks about the opportunity
to interfere with the course of nature. In Section 3.5, we provide a detailed discussion of
0i0 in relation to the principle of “Deontic Contingency”.

Ought implies Ability and Opportunity. Furthermore, ‘can’ may also be taken
as the agent’s ability together with the right opportunity. Following Vranas (2007)), the
latter component specifies the situation hosting the event in which the agent has to
exercise her ability. The following principle brings these ideas together:

What is obligatory for an agent, is a contingent state of affairs whose truth the
agent has the ability to secure: ®@;0 — (Olilp A O A O=p) (0IA+0).”

The above formulation is the first completely agentive interpretation of OiC, i.e., making
that which is obligatory fall, in all its facets, within reach of the agent. Such a reading of
OiC can be considered genuinely deliberative, and both Vranas (2007) and von Wright
(1963al) appear to endorse a principle similar to OiA+O.

Ought implies Control. Last, we consider an OiC reading which restricts obligations
to those states of affairs within the agent’s complete control.

The agent has the ability to see to it that the obligation is fulfilled and has the
ability to see to it that the obligation is violated: @;p — (O[i]e A Ofi]—¢) (OiCtrl).

This reading, arguably advocated by Stocker (1971), requires that an agent can act freely
when under obligation: “it has often been maintained that we act freely in doing or not
doing an act only if we both can do it and are able not to do it” (p.305).!Y This instance
of OiC implies that an agent is only subject to obligations whose subject matter is within
the agent’s power. The principle is arguably too strong: by restricting obligations to
situations in which the agent is in complete control, one excludes those scenarios in

$We point out that ‘opportunity’ and ‘contingency’ are not synonyms and a more fine-grained
distinction is possible. For instance, in temporal settings, a state of affairs can occasionally be true
and false (i.e., contingent), even though, at the present moment, the state of affairs is settled true and
thus beyond the scope of the agent’s influence (i.e., there is no opportunity). We will not explore this
refinement in this chapter.

9n basic STIT logic, the occurrence of (¢ in the consequent of OiA+O can be omitted since it is

implied by O[i]e. That is, if ¢ can be the result of an agent’s choice, then by definition, it is realizable.

The formula (¢ is part of OiA+O for the sake of completion.

%Tn the above quote, “able not to do [p]” can also be formally interpreted as ¢[i]=[i]p, instead of
O[t]=p. The resulting principle would be equivalent to OiA+O because O[i]-[t]e is equivalent to {—¢ in
basic STIT logic (Belnap et al., [2001)).

83



3.

OuGHT IMPLIES CAN

84

which the agent might only partially, but not decisively, contribute to securing an ideal
situation. For instance, think of group behavior in which agents need to coordinate.

Normative Readings of Ought Implies Can. OiC has been regarded as too strong
to be imposed on ethical theories and normative codes. For example, Lemmon (1962)
rejects the legitimacy of OiLP in light of the existence of moral dilemmas (we discuss
Lemmon’s argument at length in Section 3.5). Others have adopted meta-standpoints
toward OiC. For instance, Hintikka (1970) argues that OiC is only dispositional, merely
expressing a normative attitude towards the principle. Two options present themselves in
this respect: (i) “it ought to be that OiC holds” and (ii) “it ought to be possible for an agent
to fulfill her obligations”. Hintikka (1970)) seems to advocate the first option, which is
intuitively formalized as O(®;¢ — Oy) (where the first obligation is an agent-independent
‘ought to be’ modality). However, option (i) is not an OiC principle. It only expresses
that OiC should hold as a metaethical principle; cf. (McConnell, 1985)). The second
option (ii) is indeed an OiC principle, and we consider two possible interpretations.

The first one we refer to as Ought implies Normatively Can and is phrased accordingly:
What is obligatory for an agent, ought to be realizable: ®;p — ®;0p (OINC).

The second interpretation adopts an agent-dependent reading of ‘can’. We call this
principle Ought implies Normatively Able:

What is obligatory for an agent, ought to be realizable through the agent’s choice:
®ip — ®;0[i]e (OINA).

We point out that we interpret the obligation in the consequent of OINC and OiNA as
agent-dependent. Thus, OINC reads “If ¢ is obligatory for agent i, then it ought to be the
case for agent i that ¢ is realizable”. Since obligations in the antecedent of these principles
are agent-dependent, we consider it more accurate to say that what is obligatory ought
to be realizable for that agent, thus making explicit reference to the agent in question.
Normative interpretations of the first eight OiC interpretations are straightforwardly
obtained. For the aims of this chapter, the principles OINC and OiNA suffice.

In Table 3.1, the ten principles are collected and associated with references to the various
authors discussing them. We stress that the references in Table 3.1|relate to the works that
(philosophically) discuss ideas about these principles. The corresponding formalizations
are our own and may not correspond with those given in the references (if any are given).
Furthermore, the list of discussed principles is not exhaustive, and in Section 3.6, we
briefly discuss some alternative OiC interpretations from the literature. It is not our
aim to decide which OiC principle should be adopted, and notable cases were for each of
them. Instead, we aim to provide a logical investigation of how these principles relate.
To this, we turn now.
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Name Ought implies... Formalized Literature

OiLP Logical Possibility ®;p — - ®; L Anderson and Moore (1957)), van
Eck (1982), and von Wright
(1951; 1981)

OiRz Realizability ®ip = Qp van Eck (1982)), Hilpinen and Mec-
Namara (2013), and Horty (2001,
Ch.3)

OiA Ability ®ip — Oli]e Horty (2001, Ch.4) and von
Wright (1963a), Ch.7)

Ooiv Violability ®ip — O Anderson and Moore (1957),

Dahl (1974), Goldman (1970),
and von Wright (1963a, Ch.8)

OiRef  Refrainability ®ip — Oli]-[i]e Goldman (1970) and Vranas
(2018a)
0i0 Opportunity Rip = (O A O—p) Anderson and Moore (1957),

Copp (2017), Dahl (1974), and
von Wright (1951; 1968)

OiA+0O  Ability and Opp.  ®;0 — (OliJe A Op A O—¢)  van Ackeren and Kiihler (2015)),
Kohl (2015), Vranas (2007)), and
von Wright (1963a)

OiCtrl  Control ®ip = (Oli]e A Oli]—¢) Dahl (1974)), Stocker (1971)), and
McConnell (1989)

OiNC Normatively Can  ®;0 — ®;0¢ van Ackeren and Kiihler (2015)
and Hintikka (1970)
OiNA Normatively Able ®;0 — ®;0]i]¢ van Ackeren and Kiihler (2015)

and Hintikka (1970)

Table 3.1: List of the ten OiC principles and their treatment in the literature.

3.2 Deontic STIT Logics: a Non-Normal Modal Approach

In this section, we introduce deontic STIT logics for each reading of OiC. To differentiate
the resulting logics from the logics developed in Chapter 2, we write OS,, to indicate
that the logic serves the analysis of Ought-implies-Can in STIT (with n referring to the
number of agents). In (van Berkel and Lyon, |2021), we formalized the deliberative OiC
principles—QiV, OiRef, 0iO, OiA+0, and QiCtrl—by means of defined modal operators.
This section demonstrates that all OiC principles can be axiomatized and semantically
characterized once we move to a non-normal modal interpretation of the deontic modality
®;. This is Objective [1.

Definition 3.1 (The Language £2). Let Atoms = {p,q,r,...} be a denumerable set of
propositional atoms and let Agents = {1,2,...,n} be a finite set of agent labels. The
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language LS is defined via the following BNF grammar:

pu=p|oploAe | Op|filp| @

where p € Atoms and i € Agents.

Let O, (i), and ©; be the duals of 0J, [i], and ®;, respectively. For a discussion of the
language E;il we refer to Section [2.1. Whether ®; captures the quasi-agentive reading of
obligation depends on whether the formula ®;¢ = ®;[i]¢ is valid in the logic in question
(see Section 2.1, Remark 2.1). In order to capture certain nuances of OiC, we forego
the quasi-agentive reading and interpret ®; as “it is obligatory for agent i that” (some
proposition holds). In Section 3.6, we discuss the logical consequences of adopting the
quasi-agentive reading of ®; for the analysis of OiC.

3.2.1 Axiomatizations of OiC in Deontic STIT

The Hilbert-style axiomatization of the minimal logic OS,, is given below.

Definition 3.2 (The Axiomatization of OS,,). We define OS,, to be the following collection
of axiom schemes and rules:

A0. All classical propositional tautologies;

RO. From ¢ and @ — 1, infer ¢;

Al. O(p = ¢) = (Op — Ovy);

A2. Oy — ¢,

A3. Op — OOp;

AL il = ) = ([ile = [il¥);

A5. [i]e — @;

A6. (i)p — [i](1)e;

A7. Op — [i]p;

A8. Aieagents Qlilpi = O(Aicagentslil®i);
A10. ®;0 — O ®; p;

R1. From , infer Op;

R2. From ¢ =1, infer ®;p = ®;¢;
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where we have a copy of A4d-AT, /A10, and R2 for each i € Agents. The logic OS,, is the
smallest set of formulae from ﬁg closed under all instances of the axiom schemes and
applications of the inference rules RO — R2. Whenever ¢ € OS,,, we say that o € L2
is a OSp-theorem and write Fos, ¢. Last, OS,-derivability is defined as usual (see
Definition 2.5).

Axioms|A1-A7 and R1, characterize (J and [i] as normal modal S5-operators. In particular,
necessitation holds for [i] by virtue of R1 and |A7. The bridge axiom A7 confines choices
to moments. Axiom |A8| denotes the independence of agents property of STIT. For a
discussion of these non-deontic axioms of OS,, see Section 2.1. There is one deontic axiom
A10| expressing the fact that obligations are moment dependent. Namely, obligations
express which continuations of the present moment are deontically ideal for that agent.
For that reason, obligations do not vary from world to world within a moment but
hold independently of any of the agent’s choices at that moment. Notice that ®;
is a mon-normal modal operator, i.e., we neither adopt the distribution axiom A9
®Ri(p = P) = (®ip — ®i1) of Definition 2.2 nor a rule of necessitation stating that
Fos, ¢ implies Fos, ®;¢ (hence, the missing |A9 in Definition 3.2). We only adopt the
rule R2, which captures the minimal property of non-normal modal logics, referred to
as the rule of congruence (Chellas, [1980). Intuitively, the rule enables us to substitute
equivalent formulae inside the scope of a deontic modality ®;. It ensures, for instance,
that redundant syntactic differences do not influence the derivability of ®;-formulae, e.g.,
think of ¢ = (¢ A ¢). Variations of R2 hold for O and [i] due to the fact that these
modalities are normal. Namely, suppose Fos, ¢ = ¢, by R1 we obtain Fos, O(¢ = )
and by modal reasoning using Al and RO we derive Fos,, Uy = Ui,

Remark 3.2. We point out in passing that OS,, does not satisfy the bridge axiom
Op — ®;p. A consequence of adopting that axiom is the theorem ®; T, which conflicts
with any deliberative reading of OiC (cf. the discussion on page 88). Furthermore,
we point out that Horty’s (2001) Utilitarian Deontic STIT —i.e., US,, of Section 2.5—
does contain the above bridge axiom. Here, we omit this axiom to capture some of
the nuances we find in the literature of OiC. For instance, due to the bridge azxiom
(®ip = " ®; L) = (®ip — Op) is a theorem of US,,, which means that the logic cannot
differentiate between OiLP and OiRz.

The axiomatic system OS,, may be extended with any (combination) of the ten formalized
OiC principles from Table [3.1. The resulting logics are defined in Definition 3.3/

Definition 3.3 (The Logic 0S,,X). The logic OS, X is defined as the extension of OS,
with the aziom schemes in X C {Ai | 11 <i < 20}, where All. .. A20 are the following
axiom schemes:

All. Rip — 7 Q; 1 (OILP),
Al12. ®;p — Op (OiRz);
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A13. @i — Olilp (OiA);

Ald. @0 — O (OIV);

A15. ®;p — Oi]-[i]p (OiRef);

A16. @0 — (Op A O—gp) (0I0);

AL7. @ip — (Olile A Op A =) (OIA+0);
A18. ®ip — (O[ilp A Ofi]—p) (OiCtrl);
A19. ®;¢ — ®;0¢p (OINC);

A20. ®;p — ®;0[i]¢ (OINA);

for each © € Agents. The inference relation Fos,x is defined as usual.

Definition 3.3 yields arbitrary extensions of the minimal logic OS,,. We make three points:
First, we are mostly interested in logics OS,,X where X contains only a single OiC axiom
scheme for each agent. In other words, these are deontic STIT logics tailored to particular
readings of OiC. Second, on a related note, one could adopt for different agents different
OiC principles. Although the formal results of this chapter hold for all these logics, we
mainly focus on logics in which the same OiC principle applies to every agent. Third, in
Section 3.4, we demonstrate that some OiC principles logically imply others. This means
that not all OS,X axiomatizations are minimal axiomatizations. To give an example,
0i0 logically implies OiV and for that reason the logic OS, X with X = { |A16,A14 | for
each 7 € Agents} is equivalent to the logic OS, X" with X’ = { |A16/| for each i € Agents}.

Reasons for Using Non-Normal Modalities. Before providing the semantics for
0S5, X, it must be noted that the logics are minimal. Namely, the logics are tailored to
axiomatize OiC principles, and so far, no additional properties have been enforced. In
particular, the logics do not satisfy the following properties:

M. ®;(pAY) = (Rip A Ri0);
C. (®ip A®iv) = Qi(p ANY);
N. ®;T.

The axioms M, |C, and |N| represent monotonicity, aggregation, and necessity, respectively.
They are theorems of any normal modal characterization of ®; (Chellas, 1980).'

"The common name for Axiom |[M|is monotonicity, e.g., see Chellas (1980). Despite its shared name,
this modal property must be distinguished from the use of monotonicity as a property of the inference
relation F, e.g., see Arieli et al. (2021)). The latter property is central to part IIT of this thesis, e.g., see
Definition |7.2| on page [258. Axiom |N|corresponds to the rule of necessitation in normal modal logic.
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In (van Berkel and Lyon, 2021), we adopted a normal modal approach to OiC. There, we
proceeded in two ways: first, we defined deontic STIT operators capturing deliberative
aspects of obligation, and second, we introduced a class of axioms determining the
behavior of the ®; operator. The two together were sufficient to obtain some first results
about the logical taxonomy of OiC. However, as already noted in (van Berkel and Lyon,
2021), the use of defined deliberative deontic operators was ad hoc. There, it was left to
future work to provide a proper axiomatization of these deliberative OiC principles. We
explain this further: A normal modal interpretation of ®; implies that ®; T is a theorem
of the logic. Consequently, an axiomatization of, for instance, ‘ought implies violability’
(OiV)—i.e., ®;p — O—p—would render the logic inconsistent. Namely, by the axiom |N
we can derive ®; T which together with OiV implies ¢ L. The latter is inconsistent with
the fact that O is also a normal modal operator, i.e., -1 is a theorem. In (van Berkel
and Lyon, 2021)), this problem was addressed by introducing the deliberative obligation,

%0 1= ®ip A O

expressing that an agent’s obligations can be violated. See (van Berkel and Lyon, 2021
for a discussion of the other defined deliberative obligation. By adopting a non-normal
modal approach to ®; in this chapter, we forego these ad hoc definitions and take the
ten OiC readings as axioms proper.

A straightforward objection to the approach in this chapter is that the resulting logics
are too weak for intuitive deontic reasoning tasks (cf. the absence of M| |[C, and N). Still,
the approach taken here is deliberate: by adopting minimal axiomatizations of OS,X,
we can better understand how various OiC axioms are logically related. We exclude
the risk that certain OiC axioms seem related due to the presence of additional deontic
reasoning principles. In order to restore some inferential power in OS, X, we extend the
logics with restricted versions of M| and |C| that take into account the different OiC axioms
in question. We do this in Section 3.5l

3.2.2 Semantics for OiC in Deontic STIT

We adopt relational semantics (Balbiani et al., |2008) to characterize the non-deontic
fragment of OS,, and adopt neighborhood semantics to capture the various non-normal
readings of OiC. Neighborhood frames (Chellas, [1980) were developed to characterize
logics that do not satisfy the properties induced by minimal relational frames, i.e., |M, |C,
and N. Instead of adopting a directed relation R, over worlds, we adopt a neighborhood
function Ng, that maps worlds w, v, u, ... to sets of worlds X,Y,Z C W. We say that at
w, the set of worlds Z is considered deontically ideal for agent ¢ whenever Z € Ng, (w). In
what follows, we define minimal OS,,-frames and subsequently provide a list of properties
with which these frames may be extended.

Definition 3.4 (Frames and Models for OS,). An OS, -frame is defined as a tuple
§ = (W, R, {Ry;) | i € Agents}, {Ng, | i € Agents}). Let Ry €W x W and Ra(w) :=
{veW| (wwv) e Ry} for a € {0}y U{[i] | i € Agents}. Let Ng, be a neighborhood
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function for each i € Agents such that Ng, : W — o(W). Let W be a non-empty set of
worlds w,v,u, ... such that the following hold:

C1 Rg is an equivalence relation;

C2 For all i € Agents, Ry; is an equivalence relation;

C3 For alli € Agents, R C Ro;

C4 For allw € W and all uy, ..., un € Ro(w), Nicagents Ryij(wi) # 0;

O1 Forallw,v e W, and all Z C W, if Z € Ng,(w) and v € Ro(w), then Z € Ng,(v).

An OS,-model is a tuple M = (F,V) where § is an OS,-frame and V is a valuation
function mapping propositional atoms to subsets of W, i.e., V: Atoms — o(W).

In Definition 3.4, property C1 stipulates that R are moments. For each agent in the
language, C2 and C3 partition moments into choices. C4 imposes the independence of
agents principle. For a discussion of the non-deontic STIT properties C1-C4 we refer to
Section 2.1L

The only deontic property imposed on minimal OS,,-frames is O1, which captures the
idea that what is obligatory is settled true for each moment, irrespective of the choices
the agents will make at that moment (cf. axiom A10). The property O1 corresponds
to D1 of DS, -frames (Section 2.1). We emphasize that the class of OS,-frames does
not require that worlds ideal at a certain moment are realizable at that very moment
(Remark 3.2). This means that what is ideal might not be realizable by any of the agents’
(combined) choices and might therefore be beyond the grasp of agency. Last, although
an OS,-frame may contain several moments, we abstain from a temporal extension of
0S,,. In Section [3.6, we discuss some temporal OiC principles.

The semantic interpretation of £% is defined as usual. The modality ®; is evaluated with
respect to its corresponding neighborhood function.

Definition 3.5 (Semantics of OS,,-models). Let M be an OS,-model and let w € W
of M. Let |p|lm = {w € W | Mw = ¢} be the truth set of worlds satisfying ¢ (we
often omit the subscript MM ). The satisfaction of a formula ¢ € LE in M at w is defined
accordingly:

1. Mow = p iff Mw € V(p);

2. Mw =~ iff not M, w = ¢;

3. MuwE A iff MwEp and M w E=1Y;

4. Mw = O iff for all v € Ro(w), M,v = ¢;
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5. M w = [i]e iff for allv € Ryy(w), M, v = ¢;

6. M, w = Rip iff |l € Ng, (w).
Global truth, validity, and semantic entailment are defined as usual, e.g., see Definition|2.5.

The following list of properties enables us to semantically characterize the ten proposed
OiC readings of Table 3.1 (Section 3.1). We write Oi with ¢ € N to denote deontic frame
properties required for OiC.

O2 Forallw e W,Z CW,if Z € Ng,(w), then 0 & N, (w);

O3 Forallw e W, Z C W, if Z € Ng,(w), then Ro(w) N Z # 0;

04 Forallw e W, Z C W, if Z € Ng,(w), there is a v € Ro(w) such that Rp;(v) C Z;
O5 Forallwe W, Z C W, if Z € Ng,(w), then Ro(w) N Z # 0

06 Forall we W, Z CW,if Z € Ny, (w), then Ro(w) N Z # 0 and Ro(w) N Z # 0;

O7 For all w € W, Z C W, if Z € Ng,(w), then there is a v € Ro(w) such that
Rp;)(v) € Z, and Ro(w) N Z # 0, and Ro(w) N Z # 0;

O8 For all w e W, Z C W, if Z € Ng,(w), then there are v,u € Ro(w) such that
R (v) € Z and Ry;j(u) C Z;

09 Forallwe W, Z CW,if Z € Ng,(w), then {v e W | Ro(v)NZ # 0} € Ng,(w);

010 Forall w e W, Z C W, if Z € Ng,(w), then {v € W | there is a u € Rn(v) such
that R[z] (u) C Z} € J\/'@i(w).

As will be shown in Section 3.3, the properties O2—010 semantically characterize the
ten OiC principles of Table 3.1. To illustrate, consider property O6. Let Z = |¢|, then
the condition ensures that if |¢| € Ng,(w) (i.e., ¢ is obligatory for agent i from the
perspective w), then Ro(w)N || # 0 and Ro(w)N|e] # 0—the latter which is equivalent
to Ro(w) N |=¢| # B—consequently, both ¢ and —p are realizable at moment Rp(w).
In other words, O6 characterizes the frame property for ‘ought implies opportunity’
(Oi0). The other properties are read similarly, except for O9 and O10. The latter two
concern normative readings of OiC. For instance, recall that OiNA expresses the idea
that “ought implies ought to be able”. Property O10 captures this idea. Let Z = |¢|, if
lell € Ng, (w), then the truth-set {v € W | there is a u € Rp(v) such that Ry (u) C e[}
is in the neighborhood Ny, of w. Comparing semantic definitions, this truth set is equal
to the set |O[i]¢| € Ng,(w), which means that ([i]e is obligatory for agent i at w.
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0S,, X contains: All |A12| A13 |Al5 Al4 Al6 |Al7 A18 |A19 A20
0OS, X-frames satisfy: 02 03 04 O5 O5 06 O7 08 09 O10

Table 3.2: Correspondence between the construction of 0S,,X logics and OS, X-frames.
For instance, if |A11is an axiom of OS,,X, then we assume that the corresponding class
of OS, X-frames contains the property O2.

Remark 3.3. We did not include a frame property for the principle OiRef. The reason
is that OiV and OiRef are equivalent for any deontic extension of the basic (atemporal)
STIT logic. This is due to the equivalence O—p = O[i|-[ilp which is a valid formula
in the context of the underlying non-deontic STIT logic. Consequently, condition OS5,
characterizing OiV, likewise captures QiRef. An alternative frame property for OiRef
would be: O5° For allw e W, Z CW, if Z € Ng,(w), then there is a v € Ro(w) such
that for all u € Ry(v) we have Ry(u) N Z # 0. It can be straightforwardly checked
that the consequent of O5’ is equivalent to that of O5. Soundness and completeness in
Section 3.5 demonstrate that O5 suffices for both.

The above list of frame properties provides a modular way to obtain various extensions
of OS,,-frames. We define the entire class of OS, X-frames as follows:

Definition 3.6 (Frames and Models for 0S,X). An OS,X-frame is a tuple § =
(W, R0, {Ry | i € Agents}, {Ng, | i € Agents}) such that § satisfies all properties
of an OS,,-frame (Definition |3.4) expanded with the frame properties that correspond to
the axioms in X as stipulated in Table |3.2. An OS,X-model is a tuple (§,V) where § is
an OS,X-frame and V is a valuation function as in Definition |3.4).

3.3 Soundness and Completeness

Soundness of an 0S,, X logic is proven in the usual way (Blackburn et al., 2004; Chellas,
1980)) (cf. Section 2.2). Due to the modularity of our approach, it suffices to give a single
proof for the entire class of 0S,, X logics.

In this section, we make (often implicit) use of the following lemma.
Lemma 3.1. Let M be an OS,X-model from D