
Tools for the Investigation of
Substructural, Intermediate and

Paraconsistent Logics
DISSERTATION

zur Erlangung des akademischen Grades

Doktorin der technischen Wissenschaften

eingereicht von

Lara Katharina Spendier
Matrikelnummer 0525611

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Prof. Dr. Agata Ciabattoni

Diese Dissertation haben begutachtet:

(Prof. Dr. Agata Ciabattoni) (Ass. Prof. Elaine Pimentel, PhD)

Wien,
(Lara Katharina Spendier)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Tools for the Investigation of
Substructural, Intermediate and

Paraconsistent Logics
DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktorin der technischen Wissenschaften

by

Lara Katharina Spendier
Registration Number 0525611

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Prof. Dr. Agata Ciabattoni

The dissertation has been reviewed by:

(Prof. Dr. Agata Ciabattoni) (Ass. Prof. Elaine Pimentel, PhD)

Wien,
(Lara Katharina Spendier)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Lara Katharina Spendier
Zirkusgasse 50/15, 1020 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die ver-
wendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasserin)

i

Abstract

Non-classical logics have gained importance in many fields of computer science, engi-
neering and philosophy. They are often employed in applications of artificial intelligence,
knowledge representation and formal verification; e.g., when it comes to reasoning in pres-
ence of vague information or inconsistencies. There are already many non-classical logics
and, due to the increasing demand for such logics, new ones are introduced frequently.

Non-classical logics are often introduced or described by adding Hilbert axioms to
well-known systems. The usefulness of these logics however strongly depends on the
availability of analytic calculi for them. Analytic calculi are deductive systems in which
proof search proceeds by a step-wise decomposition of the formulas to be proved. Such
calculi play a paramount role for computational proof search and are also key to es-
tablishing essential properties for the formalized logics, like consistency or decidability.
Unfortunately, introducing an analytic calculus for a particular logic often requires sig-
nificant effort: a suitable framework for the calculus has to be chosen and adequate
inference rules reflecting the characteristic properties of the considered logic have to be
provided. Finally, soundness, completeness and analyticity of the defined calculus must
be proved. Since these steps are usually tailored to the specific logic at hand and often
difficult to establish, many important logics still lack an analytic calculus. Systematic
and algorithmic procedures to generate analytic calculi are therefore highly desirable.

This thesis presents (theoretical and engineering) tools for the investigation of sub-
structural, intermediate and paraconsistent propositional logics. The main contributions
are:

(c1) systematic procedures for the automated generation of analytic calculi,

(c2) a further exploitation of the analytic calculi to establish important properties for
the formalized logics, and

(c3) the introduction of the framework TINC (Tools for the Investigation of Non-
Classical logics) to provide computer support for the contributions (c1) and (c2).

More precisely, for substructural logics we use the analytic hypersequent calculi gen-
erated by the procedure in [52] to check whether the corresponding logics are standard
complete, i.e. they have a semantics with truth values in [0, 1] (c2).

For intermediate logics, we present two systematic procedures (c1) that differ in their
(syntactic or semantic) starting points. The first procedure is based on the syntactic

iii

presentation of a logic in terms of a Hilbert system: we combine the method in [52] with
a heuristic to transform Hilbert axioms of a certain form into equivalent (structural or
logical) hypersequent rules. The second procedure is based on the semantic specification
of a logic: it transforms frame conditions into equivalent labelled rules, obtaining a
labelled sequent calculus for the corresponding logic.

For paraconsistent logics, we establish an algorithmic procedure (c1) to generate se-
quent calculi by transforming Hilbert axioms of a certain form into equivalent logical
rules. In addition to that, we extract new semantics from the obtained calculi using
the framework of partial non-deterministic matrices [23]. The introduced semantics is
then used to reason about decidability of the corresponding logics and analyticity of the
obtained calculi (c2).

Following the spirit of “logic engineering” [139, 140], we provide computer support (c3)
to automatize the generation of analytic calculi (c1) and their utilization (c2). The tools
of TINC — AxiomCalc (for substructural logics), Framinator (for intermediate logics)
and Paralyzer (for paraconsistent logics) — are implemented in Prolog. They take a
specification of a logic as input and return (a paper written in LATEX containing) an
analytic calculus for the logic and certain properties of the logic and/or the calculus as
output.

Kurzfassung

Nichtklassische Logiken haben in vielen Gebieten der Informatik, Ingenieurswissenschaf-
ten und Philosophie an Bedeutung gewonnen und werden in Anwendungen der künst-
lichen Intelligenz, Wissensrepräsentation und formalen Verifikation eingesetzt. Es gibt
bereits viele nichtklassische Logiken und aufgrund der stetig wachsenden Nachfrage wer-
den neue häufig eingeführt.

Nichtklassische Logiken werden häufig eingeführt bzw. beschrieben, indem Hilbert
Axiome zu bereits bekannten Systemen hinzugefügt werden. Die Brauchbarkeit dieser Lo-
giken hängt jedoch stark davon ab, ob analytische Kalküle für sie verfügbar sind. Analy-
tische Kalküle sind Deduktionssysteme, in welchen Formeln durch schrittweise Zerlegung
der zu zeigenden Formeln bewiesen werden können. Solche Kalküle spielen eine immens
wichtige Rolle im Bereich der computerunterstützten Beweissuche und sind eine grund-
legende Voraussetzung für die Ermittlung essentieller Eigenschaften der formalisierten
Logiken, wie beispielsweise Konsistenz oder Entscheidbarkeit. Leider ist die Definition
eines analytischen Kalküls für eine bestimmte Logik mit hohem Aufwand verbunden:
Zuerst muss ein passender Formalismus gewählt und danach adäquate Inferenzregeln,
welche die charakteristischen Eigenschaften der Logik reflektieren, definiert werden. Ab-
schließend müssen Korrektheit, Vollständigkeit und Analytizität für den neuen Kalkül
gezeigt werden. Da diese Schritte üblicherweise auf eine bestimmte Logik zugeschnitten
und auch oft schwierig zu zeigen sind, gibt es für viele wichtige Logiken noch keinen
analytischen Kalkül. Systematische und algorithmische Prozeduren zur automatisierten
Generierung analytischer Kalküle sind daher sehr erstrebenswert.

In dieser Dissertation präsentieren wir (theoretische und praktische) Tools für die Un-
tersuchung von substrukturellen, intermediären und parakonsistenten Aussagenlogiken.
Unsere wichtigsten Beiträge sind:

(c1) systematische Methoden zur automatisierten Generierung von analytischen Kalkü-
len,

(c2) weitere Anwendungen der analytischen Kalküle, um wichtige Eigenschaften der
formalisierten Logiken zu zeigen, und

(c3) die Einführung des Frameworks TINC (Tools for the Investigation of Non-Classical
logics) zur Computerunterstützung für die Beiträge (c1) und (c2).

v

Für substrukturelle Logiken verwenden wir analytische Hypersequenzkalküle, die mit
der Prozedur in [52] generiert werden, um herauszufinden, ob die korrespondierenden Lo-
giken standard-vollständig sind, d.h., ob die Logiken eine Semantik mit Wahrheitswerten
im Intervall [0, 1] besitzen (c2).

Für intermediäre Logiken präsentieren wir zwei systematische Prozeduren (c1), die
sich in ihrem (syntaktischen oder semantischen) Ausgangspunkt unterscheiden. Die erste
Methode basiert auf der syntaktischen Beschreibung einer Logik mittels Hilbert System:
Wir kombinieren die Methode in [52] mit einer Heuristik, um Hilbert Axiome einer be-
stimmten Form in äquivalente (strukturelle oder logische) Hypersequenzregeln zu trans-
formieren. Die zweite Methode begründet sich auf der semantischen Spezifikation einer
Logik: Sie konvertiert Rahmenbedingungen in äquivalente Inferenzregeln. Auf diese Weise
erhält man einen gelabelten Sequenzkalkül für die entsprechende Logik.

Für parakonsistente Logiken generieren wir mittels einer systematischen Prozedur (c1)
Sequenzkalküle, indem Hilbert Axiome einer bestimmten Form in äquivalente logische
Inferenzregeln transformiert werden. Außerdem extrahieren wir aus den generierten Kal-
külen eine neue Semantik im Framework der partiellen nicht-deterministischen Matri-
zen [23]. Die eingeführte Semantik kann dann genutzt werden (c2), um die Entscheidbar-
keit der korrespondierenden Logiken und die Analytizität der Kalküle zu erörtern.

Im Sinne des “logic engineering” [139, 140] stellen wir Computerunterstützung (c3)
für die automatische Generierung von analytischen Kalkülen (c1) und ihrer weiteren
Anwendung (c2) zur Verfügung. Die Tools, die zu TINC gehören — AxiomCalc (für
substrukturelle Logiken), Framinator (für intermediäre Logiken) und Paralyzer (für pa-
rakonsistente Logiken) — nehmen die Spezifikation einer Logik als Input und errechnen
einen analytischen Kalkül für die Logik und bestimmte Eigenschaften der Logik und/o-
der des Kalküls. Diese Ergebnisse werden zusammengefasst und in einem automatisch
generierten LATEX-Paper ausgegeben.

Contents

1 Introduction 1
1.1 Motivations . 1
1.2 Aims of the Thesis . 2
1.3 Thesis Outline . 3
1.4 Publications . 4

2 Preliminaries and Background 5
2.1 Basic Concepts for Intuitionistic Logic . 5
2.2 Analytic Calculi and Cut Elimination . 14

3 TINC: Tools for the Investigation of Non-classical Logics 19
3.1 TINC in a Nutshell . 20
3.2 Implementation Details . 22

3.2.1 Overview Code Examples . 27
3.3 Related Work . 28

4 Substructural Logics 31
4.1 Preliminaries . 31
4.2 Theoretical Base and Related Work in Proof Theory 34
4.3 An Application: Standard Completeness for Extensions of MTL 43

4.3.1 Tool: AxiomCalc . 50

5 Intermediate Logics 57
5.1 Preliminaries . 58
5.2 Related Work in Proof Theory . 62
5.3 Towards the Generation of Logical Hypersequent Rules 65
5.4 Towards a Systematic Procedure for Labelled Calculi 78

5.4.1 Tool: Framinator . 93

6 Paraconsistent Logics 99
6.1 Preliminaries . 100
6.2 Related Work in Proof Theory . 106
6.3 Towards Analytic Calculi for Paraconsistent Logics 109
6.4 Step 1: Automated Generation of Sequent Calculi 109

vii

6.5 Step 2: Automated Extraction of Semantics 116
6.6 A Special Case . 126

6.6.1 Tool: Paralyzer . 135

7 Conclusion 143
7.1 Summary . 143
7.2 Some Open Questions . 145

A Substructural Logics 149

B Paraconsistent Logics 155

C TINC: Tool Output 159
C.1 Example LATEX-output of AxiomCalc . 159
C.2 Example LATEX-output of Framinator . 165
C.3 Example LATEX-output of Paralyzer . 169

Bibliography 177

viii

CHAPTER 1
Introduction

1.1 Motivations

Logic is a system of reasoning and the basis of applications in various fields. Some
applications call for systems of reasoning different from the usual classical logic; such
logics are called non-classical logics. Non-classical logics are often employed in appli-
cations of artificial intelligence, knowledge representation and formal verification: for
example, fuzzy logics are used for the underlying inference mechanism of medical ex-
pert systems [148, 29, 166]; paraconsistent logics have proven to be a successful tool
when handling contradicting information [36, 156]; substructural logics provide adequate
languages for modeling dynamic data structures or resources [4, 90, 83].

Due to the increasing demand for non-classical logics in the fields of engineering,
computer science or philosophy, new non-classical logics are frequently introduced. Before
these logics can however be used in potential applications, they must be studied and well
understood. A standard approach to studying a logic is to investigate its valid statements
(or theorems), which are proved from axioms via inference rules. Axioms and inference
rules compose a proof system (or calculus) for a logic. For any logic, there can be several
proof systems with different features that prove the same theorems. However, not every
proof system is useful when it comes to the development of automated reasoning methods
or studying essential mathematical properties of the formalized logic, like consistency or
decidability. Many proof systems that are used to describe logics are formulated in the
framework due to Hilbert and Frege. Such systems consist of a large number of axioms
and, in most cases, a single inference rule called modus ponens. Roughly speaking, modus
ponens allows us to derive a formula ψ from the formulas ϕ and ϕ ⊃ ψ (“ϕ implies ψ”).
A non-classical logic is then often formalized by adding, omitting, or modifying certain
axioms of a Hilbert system for classical logic.

A Hilbert calculus is a convenient proof system for describing a logic, but since it uses
the rule of modus ponens, it is not an analytic calculus. One of the traditional formalisms
aiming to overcome this deficiency is Gentzen’s framework of sequent calculi [88]. A

1

sequent calculus operates on sequents, which are pairs of multisets of formulas, and often
consists of few axioms and a large number of inference rules. An important rule in the
sequent calculus is the cut rule, which is a reformulation of modus ponens and corresponds
to the introduction of intermediate steps (lemmas) in proofs. This rule however often
breaks the analyticity property of a sequent calculus, which can be restored by showing
that the cut rule is admissible in (or eliminable from) the calculus.

Many important non-classical logics have been successfully formalized using analytic
sequent calculi. However, this framework does not seem to be expressive enough to find
analytic sequent systems for many other interesting and useful non-classical logics. As
a result, a large range of generalizations of the sequent calculus has been introduced to
define analytic calculi for logics lacking analytic sequent systems; these include hyperse-
quent calculus [9, 150], labelled sequent calculus [83, 167], or display calculus [34]. The
construction of an analytic calculus for a logic then traditionally consists of the following
three steps:

(i) Choose or define a suitable framework.

(ii) Find adequate rules that formalize the logic under consideration. A
calculus for the logic is defined within the framework chosen in step (i). This
is usually done by finding adequate inference rules that reflect the characteristic
properties of the considered logic (e.g., the Hilbert axioms formalizing the logic).
Finally, soundness and completeness proofs of the new calculus with respect to the
(system formalizing the) logic are required, where it is shown that both systems
prove the exact same theorems.

(iii) Prove analyticity of the defined calculus. Analyticity is usually obtained as a
direct corollary of the cut elimination theorem, which states that the cut rule can
be removed from the calculus without weakening the system.

These three steps are usually done ad-hoc for the particular logic under consideration
and each new calculus requires its own proofs of soundness, completeness and analyticity.
This is required even for calculi obtained by adding similar rules to different “base”
systems. The construction of an analytic calculus for a logic is thus often an error-prone
and cumbersome task. Algorithmic procedures to obtain analytic calculi in a systematic
and uniform way for large classes of logics are therefore highly desirable. These would
provide a theoretical basis for the development of efficient automated reasoning tools, and
permit the implementation of the otherwise tedious and time-consuming task of finding
an analytic calculus.

1.2 Aims of the Thesis

In this PhD thesis, we focus on substructural, intermediate and paraconsistent proposi-
tional logics. The overall aim is the development of theoretical and engineering tools for
their investigation. More precisely, the goals of this PhD project are threefold:

2

1. We strive to find systematic and uniform procedures for the automated generation
of analytic calculi for large classes of substructural, intermediate and paraconsistent
propositional logics.

2. We use the obtained calculi to establish important properties for many logics in a
uniform way.

3. We develop the framework TINC (Tools for the Investigation of Non-Classical
logics) to provide computer support for 1. and 2. by exploiting the algorithmic
and systematic nature of our procedures and implementing them as tools.

This thesis is a concrete step towards a systematic investigation of non-classical logics
and the development of theoretical and engineering tools for designing new application-
oriented logics.

1.3 Thesis Outline

The remainder of this thesis is organized as follows.
In Chapter 2, we start by recalling propositional intuitionistic logic and use it to settle

the basic definitions and notions that will be used throughout this thesis. We discuss
the notion of “analytic calculus” and recall a method to prove cut elimination for sequent
and hypersequent calculi.

Chapter 3 contains the design of our system TINC (Tools for the Investigation of
Non-Classical logics) and the description of a general approach to introduce analytic
calculi, which is based on the method introduced in [52]. Moreover, we give a short
introduction to Prolog to provide a basic understanding of the code examples in the
following chapters.

In Chapter 4, we focus on substructural logics, which are logics that lack some (or
all) of the structural rules when formalized as sequent systems. We first describe the
systematic procedure in [52] that transforms Hilbert axioms of a certain form into equiv-
alent structural sequent or hypersequent rules. Using this method, analytic calculi can
be obtained for a large class of substructural logics. Then we consider the subclass of
the introduced calculi for axiomatic extensions of monoidal t-norm logic MTL [78]. We
show how these calculi can be further utilized to check whether the corresponding logics
are standard complete, i.e., complete with respect to algebras based on truth values in
[0, 1] (and hence, whether the corresponding logics are a fuzzy logic in the sense of [97]).
The chapter also contains the description of the tool AxiomCalc, which implements our
theoretical result.

Chapter 5 focuses on intermediate logics, which are logics that lie between intuitionis-
tic and classical logic. We present two approaches for the introduction of analytic calculi,
which are distinguished by their (syntactic or semantic) starting points. The first ap-
proach is based on the syntactic presentation of a logic in terms of a Hilbert system. We
combine the automated procedure in [52] with a heuristic to transform Hilbert axioms
of a certain form into equivalent logical hypersequent rules. An instance of this method
gives a first analytic hypersequent calculus for the logic Bd2, i.e. the logic of frames

3

with bounded depth at most 2 [49], for which we present ad-hoc proofs of soundness,
completeness and cut elimination. The second approach is based on the semantic spec-
ification of a logic, which is obtained by imposing conditions on standard intuitionistic
Kripke frames. We introduce a systematic procedure, adapting the one in [52] for la-
belled sequent calculi, to obtain cut-free calculi for large classes of intermediate logics.
The method generalizes the results presented in [76] and is subsumed by the new results
in [133]. The chapter also contains a description of the implementation of the second
procedure in the tool Framinator.

Chapter 6 contains an algorithmic procedure to generate sequent calculi for a large
class of paraconsistent logics, which are logics that are not trivialized in the presence
of inconsistency. In addition to that, we extract semantics in the framework of partial
non-deterministic matrices [23] from the obtained calculi and use it to reason about the
analyticity of the calculi and the decidability of the logics. We also provide a description
of the tool Paralyzer that implements our transformation procedure and the extraction
of the semantics for a specific subclass of paraconsistent logics.

Chapter 7 summarizes the results of the thesis and discusses future research directions.

1.4 Publications

This thesis is based on the following publications:

1. Agata Ciabattoni, Ori Lahav, Lara Spendier and Anna Zamansky. Taming Para-
consistent (and Other) Logics: An Algorithmic Approach. ACM Transactions on
Computational Logic (TOCL) 16(1):5:1–5:23, 2015.

2. Agata Ciabattoni and Lara Spendier. Tools for the Investigation of Substructural
and Paraconsistent Logics. In Proceedings of the European Conference on Logics
in Artifical Intelligence (JELIA 2014), volume 8761 of LNAI, pages 18–32, 2014.

3. Agata Ciabattoni, Paolo Maffezioli and Lara Spendier. Hypersequent and Labelled
Calculi for Intermediate Logics. In Proceedings of TABLEAUX 2013, volume 8123
of LNCS, pages 81–96, 2013.

4. Agata Ciabattoni, Ori Lahav, Lara Spendier and Anna Zamansky. Automated
Support for the Investigation of Paraconsistent and Other Logics. In Proceedings of
the Symposium on Logical Foundations in Computer Science (LFCS 2013), volume
7734 of LNCS, pages 119–133, 2013.

5. Paolo Baldi, Agata Ciabattoni and Lara Spendier. Standard Completeness for Ex-
tensions of MTL: an Automated Approach. In Proceedings of International Work-
shop on Logic, Language, Information and Computation (WoLLIC 2012), volume
7456 of LNCS, pages 154–167, 2012.

4

CHAPTER 2
Preliminaries and Background

Before advancing to the results of the thesis, we establish a common ground by intro-
ducing the basic concepts. The notions that are specific for a certain part are defined in
the respective chapters.

We start by recalling propositional intuitionistic logic (abbreviated as Int) and some
proof systems for it. In particular, we focus on the Gentzen sequent calculus and on
the hypersequent calculus, as these are the main formalisms used in this thesis. In the
second part of this chapter, we discuss the notion of “analytic calculus” and recall a cut
elimination method.

For the basic notions of this chapter, we refer to the following standard references in
proof theory [43, 49, 134, 160, 165].

2.1 Basic Concepts for Intuitionistic Logic

Let us start by introducing the language Lint of propositional intuitionistic logic, which
consists of infinitely many (possibly indexed) propositional variables p, q, . . ., the binary
connectives ∧ (conjunction), ∨ (disjunction), ⊃ (implication) and the constant ⊥ for
falsity. Using this language, we can now define the formulas and subformulas of Int:

Definition 1. Atomic formulas are (possibly indexed) propositional variables p, q,
A formula of Int is then defined inductively:

1. Every atomic formula and the logical constant ⊥ is a formula.
2. If ϕ and ψ are formulas, then ϕ ∧ ψ, ϕ ∨ ψ and ϕ ⊃ ψ are formulas.

As usual, we abbreviate ⊥ ⊃ ⊥ with > and ϕ ⊃ ⊥ with ¬ϕ.
We adopt standard conventions for omitting brackets from formulas by assuming that

unary operators have the highest precedence, followed by the binary connectives (from
highest to lowest precedence) ∧, ∨, and ⊃.

5

We denote (metavariables for) formulas by (possibly indexed) ϕ,ψ, χ, α, β, . . . and
(metavariables for) finite (possibly empty) multisets of formulas by (possibly indexed)
Γ,∆,Σ,Π,

Note that all axioms considered in this thesis are in fact axiom schemas, where
ϕ,ψ, χ, α, β, . . . denote metavariables for formulas which are substituted by any formula
in the instances of the schemas.

We use the following notation for formulas and (metavariables for) multisets of for-
mulas with n ≥ 0:

ϕn =

n︷ ︸︸ ︷
{ϕ, . . . , ϕ} and Σn =

n︷ ︸︸ ︷
{Σ, . . . ,Σ}

Definition 2. Subformulas of a formula ϕ are defined by

1. ϕ is a subformula of ϕ, and
2. if ψ � χ is a subformula of ϕ, then ψ and χ are subformulas of ϕ for � ∈ {∨,∧,⊃}.

A Hilbert-style calculus consists of a set of axioms and inference rules of the form

ϕ1 · · · ϕn
ψ

where ϕ1, . . . , ϕn, ψ are metavariables for formulas (or schemas). ϕ1, . . . , ϕn are the
premises and ψ is the conclusion of the rule, which is inferred from the premises. Note
that a Hilbert system usually consists of a small number of inference rules and a high
number of (schematic) axioms.

We define the notion of derivability of formulas in a Hilbert system CH as follows:

Definition 3. A derivation of a formula ϕ in a Hilbert-style calculus is a sequence
ϕ1, . . . , ϕn of formulas such that ϕn = ϕ and for every i, 1 ≤ i ≤ n, ϕi is either an axiom
or obtained from some of the preceding formulas in the sequence by one of the inference
rules.

We use the symbol `CH to denote derivability in the Hilbert calculus CH . For the
derivability of the formula ϕ in CH , we write

`CH ϕ

By using the Hilbert-style calculus CH , we can now syntactically specify a logic as
set of theorems, i.e. as sets of formulas containing the axioms of CH and closed under
the rules of CH and substitution.

We define propositional intuitionistic logic Int in terms of the Hilbert-style calculus
IntH as follows [49]:
(Schematic) Axioms

(A1) ϕ ⊃ (ψ ⊃ ϕ)
(A2) (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))
(A3) ϕ ∧ ψ ⊃ ϕ
(A4) ϕ ∧ ψ ⊃ ψ

6

(A5) ϕ ⊃ (ψ ⊃ ϕ ∧ ψ)
(A6) ϕ ⊃ ϕ ∨ ψ
(A7) ψ ⊃ ϕ ∨ ψ
(A8) (ϕ ⊃ χ) ⊃ ((ψ ⊃ χ) ⊃ (ϕ ∨ ψ ⊃ χ))
(A9) ⊥ ⊃ ϕ

Inference rules

• modus ponens (MP): for given formulas ϕ and ϕ ⊃ ψ, we obtain ψ;
ϕ ϕ ⊃ ψ

ψ

Hilbert-style calculi are a convenient way for describing logics. However, they are not
optimal for practical use such as proof search or theorem proving. The following example
shows that finding a derivation for the formula ϕ ⊃ ϕ in IntH is not straightforward and
requires some ingenuity.

Example 1. We show `IntH ϕ ⊃ ϕ. In the right column of the following derivation (read
top-down), we either refer to the axiom that is used as assumption or to an application
of modus ponens (MP(x, y), where x and y denote the row number).

1. ϕ ⊃ (ϕ ⊃ ϕ) (A1)
2. ϕ ⊃ ((ϕ ⊃ ϕ) ⊃ ϕ) (A1)
3. (ϕ ⊃ ((ϕ ⊃ ϕ) ⊃ ϕ)) ⊃ ((ϕ ⊃ (ϕ ⊃ ϕ)) ⊃ (ϕ ⊃ ϕ)) (A2)
4. (ϕ ⊃ (ϕ ⊃ ϕ)) ⊃ (ϕ ⊃ ϕ) MP(2,3)
5. ϕ ⊃ ϕ MP(1,4)

Sequents and Sequent Calculus

The sequent calculus was introduced by Gentzen [88] as a formalism for studying proofs
in classical and intuitionistic logic. It operates on structures that are called sequents,
which are defined as follows:

Definition 4. A sequent is an expression of the form Γ ⇒ ∆ where Γ and ∆ are finite
multisets1 of formulas. We call Γ the antecedent and ∆ the succedent of the sequent. If
the succedent of a sequent contains at most one formula, it is called single-conclusion,
and multiple-conclusion, otherwise.

Intuitively, a sequent is understood as the implication from the conjunction of all
formulas in the antecedent to the disjunction of all formulas in the succedent:

Definition 5. In intuistionistic logic Int, a sequent

S = Γ⇒ ∆

1Gentzen originally used sequences of formulas.

7

is interpreted as
I(S) =

∧
Γ ⊃

∨
∆

where
∧

Γ stands for the conjunction of the formulas in Γ (> when Γ is empty), and
∨

∆
stands for the disjunction of the formulas in ∆ (⊥ when ∆ is empty).

A sequent calculus consists of axioms and rules. The rules are actually rule schemas
and an instance of a rule is a rule application or inference. A rule is written

S1 · · · Sn
S

which means that a sequent S is inferred from the sequents S1, . . . , Sn. As in Hilbert-
style calculi, we call the sequent S the conclusion of the rule while S1, . . . , Sn are the
premises. The notion of a derivation (or proof) is then also extended to sequents:

Definition 6. A derivation in a sequent calculus is a finite labelled tree with nodes
labelled by sequents and a single root (called end sequent), axioms at the top nodes, and
where each node is connected with the (immediate) successor nodes (if any) according
to the inference rules. Let C be a sequent calculus and R be a set of rules. We write
C+R to denote the sequent calculus C extended with R. For sequents derived in C+R
we write

`C+R Γ⇒ ∆

`C+R ϕ is defined as `C+R⇒ ϕ, i.e., the sequent Γ⇒ ϕ with Γ being empty. If a sequent
S0 is derivable from a set of sequents S in C +R, we write

S `C+R S0

We can now define the equivalence between a sequent calculus C and a Hilbert calculus
CH by their derivable formulas:

Definition 7. A sequent calculus C is equivalent to a Hilbert system CH if for every
finite set Γ∪{ϕ} of formulas: ϕ is provable in CH from Γ (in symbols Γ `CH ϕ) iff Γ⇒ ϕ
is provable in C (in symbols `C Γ⇒ ϕ).

The connection between a logic and a sequent calculus is then established by sound-
ness and completeness:

Definition 8. A sequent calculus C is sound for Int if for every sequent Γ ⇒ ∆, we
have

`C Γ⇒ ∆ implies I(Γ⇒ ∆) ∈ Int
Similarly, a sequent calculus C is complete for Int if for every sequent Γ⇒ ∆, we have

I(Γ⇒ ∆) ∈ Int implies `C Γ⇒ ∆

We will also need the following notions of the height of a derivation and the complexity
of a formula:

8

ϕ⇒ ϕ

Γ⇒ ϕi

Γ⇒ ϕ1 ∨ ϕ2
(∨i, r)

Γ, ϕ⇒ ψ

Γ⇒ ϕ ⊃ ψ (⊃, r) Γ⇒ ϕ Γ, ψ ⇒ Π

Γ, ϕ ⊃ ψ ⇒ Π
(⊃, l)

⊥ ⇒ ϕ

Γ, ϕi ⇒ Π

Γ, ϕ1 ∧ ϕ2 ⇒ Π
(∧i, l)

Γ⇒ ϕ Γ⇒ ψ

Γ⇒ ϕ ∧ ψ (∧, r) Γ, ϕ⇒ Π Γ, ψ ⇒ Π

Γ, ϕ ∨ ψ ⇒ Π
(∨, l)

Γ⇒
Γ⇒ ϕ

(w, r) Γ⇒ Π
Γ, ϕ⇒ Π

(w, l)
Γ, ϕ, ϕ⇒ Π

Γ, ϕ⇒ Π
(c, l)

Γ⇒ ϕ ϕ,∆⇒ Π

Γ,∆⇒ Π
(cut)

i ∈ {1, 2}; note that Γ,∆ are metavariables for multisets of formulas and Π is a metavariable
for a multiset containing at most one formula.

Table 2.1: Sequent calculus LJ for intuitionistic logic Int

Definition 9. The height |d| of a derivation d is the maximal number of inference rules
+ 1 occurring on any branch of d. The complexity |ϕ| of a formula ϕ is defined as:

1. |ϕ| = 0 if ϕ is atomic and
2. |ϕ ∧ ψ| = |ϕ ∨ ψ| = |ϕ ⊃ ψ| = max(|ϕ|, |ψ|) + 1

The first sequent calculus for propositional intuitionistic logic, LJ, was introduced by
Gentzen in [88]. It is a single-conclusion calculus. The axioms and rules (which are, in
fact, schemas) of LJ are depicted in Table 2.1.

Before explaining the different types of rules of a sequent calculus, we show that
proving theorems in this type of calculi is indeed easier than in a Hilbert-style calculus.

Example 2. We show `LJ⇒ ¬¬¬ϕ ⊃ ¬ϕ:

⊥ ⇒ ⊥ (w, l)⊥, ϕ⇒ ⊥

⊥ ⇒ ⊥ (w, l)⊥, ϕ⇒ ⊥ ϕ⇒ ϕ
(⊃, l)

ϕ,¬ϕ⇒ ⊥
(⊃, r)ϕ⇒ ¬¬ϕ
(⊃, l)¬¬¬ϕ,ϕ⇒ ⊥

(⊃, r)¬¬¬ϕ⇒ ¬ϕ
(⊃, r)⇒ ¬¬¬ϕ ⊃ ¬ϕ

Note that in this proof (read bottom-up), the end sequent is essentially decomposed
into its subformulas by using rules matching the outermost logical connectives until we
reach an initial axiom.

In a sequent calculus, we distinguish logical rules, structural rules and the cut rule.
Logical rules are rules that introduce a logical connective. The logical rules of LJ are
(⊃, l), (⊃, r), (∧i, l), (∧, r), (∨, l), (∨i, r). Consider for example the following rule intro-
ducing ⊃ on the left:

Γ⇒ ϕ Γ, ψ ⇒ Π
(⊃, l)

Γ, ϕ ⊃ ψ ⇒ Π

9

The formula ϕ ⊃ ψ in the conclusion of the rule is called principal formula. The
formulas ϕ and ψ in the premises of the rule, from which the principal formula derives,
are the active formulas. The formulas that remain unchanged by the rule application,
i.e. the formulas in Γ,Π, are referred to as the left and right contexts of the rule. We use
analogous terminology for the other rules.

For every logical connective in the language, there usually exist a left and a right
rule depending on whether a connective is introduced on the left or the right side of
the sequent. Note that in these rules, a proof of the premises implies a proof of the
conclusion. For some rules, the converse also holds, namely a proof of the conclusion
implies a proof of the premises. Such rules are called invertible:

Definition 10. Let S1, . . . , Sn, S be sequents and r a sequent rule of LJ. r is invertible
if for each instance

S1 · · · Sn
S

of r, whenever `LJ S, then `LJ Si for i = 1, . . . , n.

Structural rules do not introduce a logical connective. Examples for such rules are
the rules for weakening ((w, l) and (w, r) in Table 2.1), contraction ((c, l) in Table 2.1)
or exchange, e.g.:

Γ, ψ, ϕ⇒ Π
(e, l)

Γ, ϕ, ψ ⇒ Π

Note that in this thesis, we only consider commutative logics and we are using multisets
(and not sequences) of formulas. The exchange rules are hence superfluous and are
omitted in our calculi (see e.g. in LJ).

Finally, there is the crucial cut rule, which introduces a formula in the premises that
does not necessarily occur in the conclusion of the rule (the cut formula):

Γ⇒ ϕ ϕ,∆⇒ Π
(cut)

Γ,∆⇒ Π

Cut corresponds to the introduction of intermediate steps (lemmas) into proofs, see
e.g. the following example:

Example 3. We show `LJ ¬¬¬ϕ ⊃ (ψ ⊃ ¬ϕ ∧ ψ). To shorten the proof, we use a cut
with cut formula ¬¬¬ϕ ⊃ ¬ϕ as follows:

¬¬¬ϕ⇒ ¬¬¬ϕ
¬ϕ⇒ ¬ϕ ψ ⇒ ψ

(∧, r)¬ϕ,ψ ⇒ ¬ϕ ∧ ψ
(⊃, l)¬¬¬ϕ ⊃ ¬ϕ,¬¬¬ϕ,ψ ⇒ ¬ϕ ∧ ψ

(⊃, r)¬¬¬ϕ ⊃ ¬ϕ,¬¬¬ϕ⇒ ψ ⊃ ¬ϕ ∧ ψ
(⊃, r)¬¬¬ϕ ⊃ ¬ϕ⇒ ¬¬¬ϕ ⊃ (ψ ⊃ ¬ϕ ∧ ψ)

(Example 2)
...

⇒ ¬¬¬ϕ ⊃ ¬ϕ
(cut)⇒ ¬¬¬ϕ ⊃ (ψ ⊃ ¬ϕ ∧ ψ)

10

Note also that the cut rule can simulate modus ponens (MP):

Example 4. The rule modus ponens allows for given formulas ϕ and ϕ ⊃ ψ to obtain
ψ:

ϕ ϕ ⊃ ψ
ψ

To show that modus ponens can be simulated by the cut rule, we only need to derive ⇒ ψ
from ⇒ ϕ and ⇒ ϕ ⊃ ψ:

⇒ ϕ ⊃ ψ
⇒ ϕ

ϕ⇒ ϕ ψ ⇒ ψ
(⊃, l)

ϕ,ϕ ⊃ ψ ⇒ ψ
(cut)

ϕ ⊃ ψ ⇒ ψ
(cut)⇒ ψ

Even though the cut rule is useful to shorten proofs, an important result is the
possibility to actually remove (or eliminate) all instances of the cut rule from derivations.
For more details on cut elimination in sequent calculi see Section 2.2.

Finally, we also need the notion of equivalent rules in a sequent calculus (we present
it for LJ, but it is straightforwardly generalized to other calculi):

Definition 11. Two rules r and r′ are equivalent (in LJ) if the derivability relations
`LJ+r and `LJ+r′ coincide, i.e., when the conclusion of r is derivable from its premises in
LJ+ r′ (and the conclusion of r′ is derivable from its premises in LJ+ r). The definition
naturally extends to sets of rules.

Hypersequents and Hypersequent Calculus

Introduced by Avron in [9] (and, independently, by Pottinger in [150]), the hypersequent
calculus is a simple and natural generalization of the sequent calculus. The hypersequent
calculus does not operate on sequents but on hypersequents, which are finite multisets of
sequents:

Definition 12. A hypersequent is a finite multiset Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n where
each Γi ⇒ ∆i, i = 1, . . . , n is a sequent, called a component of the hypersequent. A
hypersequent is single-conclusion if all of its components are single-conclusion and it is
multiple-conclusion otherwise.

The new structural connective “|” that is used to separate the sequents is usually
interpreted as disjuction at the meta-level.

Definition 13. In intuitionistic logic Int, a hypersequent

G = Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n

is interpreted as:

I(G) = (
∧

Γ1 ⊃
∨

∆1) ∨ · · · ∨ (
∧

Γn ⊃
∨

∆n)

11

ϕ⇒ ϕ

G | Γ⇒ ϕi

G | Γ⇒ ϕ1 ∨ ϕ2
(∨i, r)

G | Γ, ϕ⇒ Π G | Γ, ψ ⇒ Π

G | Γ, ϕ ∨ ψ ⇒ Π
(∨, l)

⊥ ⇒ ϕ

G | Γ, ϕ⇒ ψ

G | Γ⇒ ϕ ⊃ ψ (⊃, r) G | Γ⇒ ϕ G | Γ, ψ ⇒ Π

G | Γ, ϕ ⊃ ψ ⇒ Π
(⊃, l)

G | Γ⇒
G | Γ⇒ ϕ

(w, r)
G | Γ, ϕ, ψ ⇒ Π

G | Γ, ϕ ∧ ψ ⇒ Π
(∧, l) G | Γ⇒ ϕ G | Γ⇒ ψ

G | Γ⇒ ϕ ∧ ψ (∧, r)

G | Γ⇒ Π

G | Γ, ϕ⇒ Π
(w, l)

G | Γ, ϕ, ϕ⇒ Π

G | Γ, ϕ⇒ Π
(c, l)

G | Γ⇒ ϕ H | ϕ,∆⇒ Π

G | H | Γ,∆⇒ Π
(cut)

G
G | Γ⇒ Π

(ew)
G | Γ⇒ Π | Γ⇒ Π

G | Γ⇒ Π
(ec)

i ∈ {1, 2}; note that Γ,∆ are metavariables for multisets of formulas and Π,Π′ are
metavariables for a multiset containing at most one formula.

Table 2.2: Hypersequent calculus HLJ for intuitionistic logic Int

where
∧

Γi is the conjunction ∧ of the formulas in Γi (> when Γi is empty), and
∨

∆i is
the disjunction of the formulas in ∆i (⊥ when ∆i is empty).

As in the case of sequent calculus, the rules of a hypersequent calculus consist of
axioms, logical rules, structural rules and the cut rule. Axioms and the cut rule are
essentially the same as in the sequent calculus. The only difference is that in the cut
rule (possibly empty) side hypersequents G,H may occur. Structural and logical rules
are divided into internal and external rules. Internal rules deal with formulas within one
component of a hypersequent. Examples for internal structural rules are the structural
rules for weakening and contraction of LJ (augmented with the side hypersequent G).
External rules manipulate the components of a hypersequent, see for example the rules
for external weakening (ew) and external contraction (ec) in Table 2.2.

HLJ is a single-conclusion hypersequent calculus for Int. Its axioms and rules are
depicted in Table 2.2.

The definitions of derivation, soundness and completeness are naturally extended to
hypersequent calculi. We can also establish equivalence between hypersequent rules (in
HLJ):

Definition 14. Let S be a set of sequents and S0 be a sequent. Two hypersequent rules
r and r′ are equivalent in HLJ if the derivability relations `HLJ+r and `HLJ+r′ coincide
when restricted to sequents2: S `HLJ+r S0 iff S `HLJ+r′ S0 for any set S ∪ {S0} of
sequents.

2We restrict the derivability to sequents because we are mainly interested in the derivability relations
of formulas (and sequents).

12

In hypersequent calculi, we can define rules acting on several components of one or
more hypersequents in parallel. This type of rules increases the expressive power of
hypersequent calculi compared to ordinary sequent calculi. An example for such a rule
is the communication rule (com) introduced by Avron in [10]:

G | Γ,∆⇒ Π G | Γ′,∆′ ⇒ Π′

G | Γ,Γ′ ⇒ Π | ∆,∆′ ⇒ Π′
(com)

Indeed, by adding (com) to the calculus HLJ (see Table 2.2), we can prove the
prelinearity axiom (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ) in this calculus by an application of this rule3:

Example 5. We show `HLJ+(com) (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ) (we indicate several applications
of a rule by a double line):

ϕ⇒ ϕ ψ ⇒ ψ
(com)

ϕ⇒ ψ | ψ ⇒ ϕ
(⊃, r)

⇒ ϕ ⊃ ψ |⇒ ψ ⊃ ϕ
(∨i, r)⇒ (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ) |⇒ (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ)
(ec)⇒ (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ)

Other Formalisms

We briefly mention some other generalizations of Gentzen’s sequent calculus, which can be
divided into syntactic and semantic formalisms. In the syntactic formalisms, sequents are
generalized by allowing extra structural connectives in addition to sequents’ comma; in
the semantic formalisms, the semantic language is explicit part of the syntax in sequents
and rules. Nested sequent calculi and display calculi belong to the former class, while
labelled sequent calculi belong to the latter class of proof-theoretic frameworks.

Labelled Sequent Calculus. Labelled sequents generalize ordinary sequents by
prefixing the formulas in a sequent with indices or labels. The design of labelled sequent
calculi [83, 167] allows us to incorporate the relational semantics of the logic in the syntax.
This is achieved by (a) adding a label to each formula, where each label represents a
possible world, and (b) using relational formulas that define the underlying relational
semantics of the logic. For more detail on labelled sequent calculi see Section 5.1.

Nested Sequent Calculus. Nested sequents allow sequents to appear nested within
other sequents. Rules of the nested sequent calculus can then be applied at any depth.
Nested sequent calculi were first introduced by Kashima in [109]. Variations of these
calculi became popular quite recently [41, 42, 94, 2, 81, 159].

Tree hypersequents were introduced by Poggiolesi in [149]. They are defined by ex-
tending the syntax of hypersequents with two new symbols and by assigning importance

3Note that by extending HLJ with the (com)-rule, we obtain a calculus for Gödel-Dummet
logic GD [91, 71, 10].

13

to the order of the sequents. Tree hypersequents internalize the structure of tree-frames
of Kripke semantics. Labelled tree sequents are an instance of labelled sequents. Their
underlying graph structure is restricted to a tree. Nested sequents, tree hypersequents
and labelled tree sequents turned out to be notational variants of each other, as shown
in [95].

Display Calculus. Introduced by Belnap in [34], the display calculus is a powerful
generalization of the sequent calculus which has been used to capture a large variety of
different logics [110, 169, 93, 170, 40].

In a display calculus, we use many new structural connectives in addition to the
structural connective ‘,’ (comma) of sequent calculus. Display calculus rules rules do
not operate only on formulas, but also on structures, which are built from formulas and
structure constants by using these new structural connectives. A distinctive feature of
display calculus is that we can display any given formula (structure, resp.) contained in
a sequent by transforming the sequent into an equivalent one that has the given formula
(structure, resp.) as the whole antecedent or succedent. The main advantage of display
calculi lies to a large extent in a general cut elimination theorem that can be verified by
checking whether the calculus obeys eight syntactic conditions.

2.2 Analytic Calculi and Cut Elimination

As already mentioned before, the use of cuts corresponds to the introduction of lemmas
in a proof. But in a cut-free derivation (i.e. a derivation not containing applications of
the cut rule), all formulas occurring in this derivation are subformulas of the end sequent.
This property, known as subformula property, is key for the development of automated
reasoning methods and proof-theoretic applications. Calculi with the subformula prop-
erty are often referred to as analytic.

How can we prove that a calculus is analytic?
One way is to show the completeness of the calculus without the cut rule, i.e., that

the cut rule (in a system without cut) is admissible. This means that the presence of the
cut rule in the calculus does not add any new derivable sequents and the system is hence
closed under cut.

Another — constructive — method is to prove the cut elimination theorem by trans-
forming proofs containing applications of the cut rule into proofs without such applica-
tions. Gentzen’s original proof of cut elimination (the Hauptsatz) for LJ [88] proceeds
by a double induction on the complexity of the cut formula and the sum of its left and
right ranks, starting from an uppermost cut. The left and right rank of a cut is defined
as follows:

Definition 15. The left and right rank of a cut is the number of consecutive sequents
that contain the cut formula, counting upward from the left and right premise of the cut,
respectively.

14

Gentzen’s strategy for cut elimination was (1) to permute the cut upwards to reduce
the rank, or (2) to replace the cut formula with another formula that has lower complexity.

(1) Permute the cut upwards.
Consider for example the following application of a cut:

Γ⇒ χ

∆, χ⇒ ϕ
(∨1, r)

∆, χ⇒ ϕ ∨ ψ
(cut)

Γ,∆⇒ ϕ ∨ ψ

The cut can then be permuted upwards as follows:

Γ⇒ χ ∆, χ⇒ ϕ
(cut)

Γ,∆⇒ ϕ
(∨1, r)

Γ,∆⇒ ϕ ∨ ψ

(2) Replace the cut formula with a cut formula of lower complexity.
Consider the following application of a cut:

Γ⇒ ϕ
(∨1, r)

Γ⇒ ϕ ∨ ψ
ϕ,∆⇒ Π ψ,∆⇒ Π

(∨, l)
ϕ ∨ ψ,∆⇒ Π

(cut)
Γ,∆⇒ Π

It can be replaced by the following cut:

Γ⇒ ϕ ϕ,∆⇒ Π
(cut)

Γ,∆⇒ Π

By repeating these types of replacements, one of the two parameters of the double
induction will decrease: either the rank becomes smaller while the complexity remains the
same (1) or the complexity of the cut formula decreases (2). Eventually, the derivation
will end in an application of the cut rule where the cut formula is introduced by an axiom
or an application of (w, r) or (w, l). Either way, the sequent in the conclusion of the cut
can be proved without using the cut rule.

A problem occurs, however, when the cut formula is contracted by an application of
the rule (c, l). This can be seen in the following case:

Γ⇒ ϕ

ϕ,ϕ,∆⇒ Π
(c, l)

ϕ,∆⇒ Π
(cut)

Γ,∆⇒ Π

Here, the cut is not necessarily permuted upwards:

Γ⇒ ϕ

Γ⇒ ϕ ϕ,ϕ,∆⇒ Π
(cut)

ϕ,Γ,∆⇒ Π
(cut)

Γ,Γ,∆⇒ Π
(c, l)

Γ,∆⇒ Π

15

It can be seen that the right rank of the second cut is at least that of the original cut.
To overcome this problem, Gentzen introduced the multicut rule, which is a derivable
generalization of the cut rule, and allows to cut several occurrences of the cut formula:

Γ⇒ ϕ ϕn,∆⇒ Π

Γ,∆⇒ Π
(mcut)

By using the multicut rule instead of the cut rule, the following theorem can be
proven:

Theorem 1 ([88]). Cut elimination holds for LJ .

Cut Elimination in Hypersequent Calculi

In hypersequent calculi, cut elimination proofs proceed essentially as in the sequent
calculus case. In addition to the problematic case regarding the internal contraction rules,
a similar problem arises when permuting the cut upwards over the external contraction
rule (ec). Avron solved this problem in [9] for the hypersequent calculus GRM of the
logic RM4 by keeping track of the “history of a derivation”. Another way to overcome
this obstacle is to introduce a multicut hypersequent rule, which allows — similarly to
Gentzen’s solution for sequents — to cut between one and several components in parallel:

G | Γ⇒ ϕ H | ∆1, ϕ
m1 ⇒ Π1 | · · · | ∆n, ϕ

mn ⇒ Πn

G | H | ∆1,Γ
m1 ⇒ Π1 | · · · | ∆n,Γ

mn ⇒ Πn
(mcut)

We will briefly sketch a general method of proving cut elimination [127, 58, 60] that
works for many single-conclusion hypersequent calculi. The idea of this approach is
to prove cut elimination for all hypersequent calculi whose rules satisfy some simple
syntactic properties: they are “substitutive” and “reductive”. Intuitively, substitutivity
of a rule ensures that cuts over non-principal formulas can be permuted upwards in the
derivation. When the cut formula is principal in both premises, reductivity of the rules
allows to replace the cut with a smaller cut on subformulas of the cut formula.

Let G and H be single-conclusion hypersequents. The set CUT(G,H) consists of
hypersequents that are obtained by a cut between one component in H and one or more
components in G:

Definition 16 ([127, 60]). CUT(G,H) is the set of hypersequents obtained by saturating
{G,H} under the following two operations:

1. if G = (G′ | ∆1, ϕ
m1 ⇒ Π1 | · · · | ∆n, ϕ

mn ⇒ Πn) and H = (H ′ | Γ⇒ ϕ), then, for
all 0 ≤ li ≤ mi and i = 1, . . . , n it is the case that CUT(G,H) 3

G′ | H ′ | ∆1,Γ
l1 , ϕm1−l1 ⇒ Π1 | · · · | ∆n,Γ

ln , ϕmn−ln ⇒ Πn

4RM is an extension of the relevance logic R [4] with the “mingle” axiom α ⊃ (α ⊃ α).

16

2. if G = (G′ | Γ1 ⇒ ϕ | · · · | Γn ⇒ ϕ) and H = (H ′ | ∆, ϕ ⇒ Π) then it is the case
that CUT(G,H) 3

G′ | H ′ | Γ1,∆⇒ Π | · · · | Γn,∆⇒ Π

Definition 17 ([127, 60]). A hypersequent rule r is substitutive if for any

• instance
G1 · · · Gn

G of r,
• single-conclusioned hypersequent H,
• G′ ∈ CUT(G,H) (with the condition that if r is a logical rule, then G′ contains

its principal formula), there exist G′i ∈ CUT(Gi, H) for i = 1, . . . , n such that
G′1 · · · G′n

G′ is an instance of r.

Definition 18 ([127, 60]). The logical rules for any n-ary connective ♥ are reductive if
for all instances of left and right rules of ♥:

G | S1 . . . G | Sl
G | ∆,♥(ϕ1, . . . , ϕn)⇒ Π

G′ | S′1 . . . G | S′k
G′ | Γ⇒ ♥(ϕ1, . . . , ϕn)

with Si, S
′
j sequents for i = 1, . . . , l; j = 1, . . . , k, the hypersequent G′ | G | Γ,∆ ⇒ Π

is derivable from (G | S1), . . . , (G | Sl), (G′ | S′1), . . . , (G′ | S′k) using only (cut) with cut
formulas from ϕ1, . . . , ϕn.

The proof of cut elimination is then similar to Gentzen’s cut elimination proof: it
takes an uppermost cut and shifts it upwards in a specific order. First, the cut is moved
upwards in the derivation that has the cut formula on the right side of the sequent (and
then it is moved upwards in the derivation that has the cut formula on the left side).
This shift is ensured by substitutivity of the rules of the calculus. If the cut formula
is principal in both premises, by reductivity the cuts can be replaced by cuts on its
subformulas.

Using this procedure, the following can be proved:

Theorem 2 ([127]). Cut elimination holds for any single-conclusion hypersequent calcu-
lus that consists of:

(1) the initial axioms for identity ϕ⇒ ϕ (and possibly for the logical constants),
(2) the rules (cut), (ew), and (ec)
(3) a set of substitutive and reductive logical rules, and
(4) a set of substitutive structural rules.

Since the rules of HLJ are reductive and substitutive, we have the following:

Corollary 1. Cut elimination holds for HLJ .

17

CHAPTER 3
TINC: Tools for the Investigation of

Non-classical Logics

The idea to use computer support for the creation and investigation of logics has already
been around for more than two decades, see e.g. [139, 140]. Following this spirit of “logic
engineering”, several tools have been introduced that aim at making theoretical results in
logic more accessible to researchers and practitioners who might not have deep knowledge
about the underlying logical theory, e.g. [22, 163, 164, 136]. A particular example of a
“logic engineering” tool addressing the issue of finding analytic calculi in an automated
way is the system MUltlog [22] which introduces such calculi for the rather restricted
class of finite-valued logics.

In this chapter, we describe the system TINC, which stands for Tools for the Inves-
tigation of Non-Classical logics. It is created along the line of MUltlog to automatically
generate analytic calculi for a wider range of non-classical logics. TINC takes the spec-
ification of a logic as input, returns an analytic calculus for the logic and states certain
properties of the calculus. Since there is not yet a method to create analytic calculi
for all non-classical logics uniformly, the task is being done incrementally by covering
more and more families of logics — leading to several tools included in TINC. TINC
currently contains three tools that can handle large classes of substructural, intermediate
and paraconsistent logics. The tools (and their source code) are available at:

http://www.logic.at/tinc

In the following sections, we start by giving an overview of the general structure and
idea of the TINC-system. We continue by presenting an overview of the implementation
of the TINC-tools. The last section contains selected related work in the area.

This chapter is based on the publication [61].

19

http://www.logic.at/tinc

Figure 3.1: Definition of analytic calculi

3.1 TINC in a Nutshell

The theoretical basis of TINC is a procedure that has first been introduced in [52] for
substructural logics. This procedure transforms Hilbert axioms of a specific shape into
analytic sequent and hypersequent calculi in a uniform and systematic way (see Chapter 4
for a description of the method). The method has been further extended and modified to
cover other logics, see e.g. [62, 28, 57, 55, 59, 56]. The original transformation procedure
from [52] and some of these extended and modified procedures have been implemented
in three tools, which are available via TINC, and are described in the Sections 4.3.1,
5.4.1 and 6.6.1.

The general idea of the procedure is depicted in Figure 3.1. We start from some base
logic, e.g. intuitionistic logic Int. The logics that we can deal with are then defined
by adding suitable formulas, in the form of Hilbert axioms or semantic specifications
(frame conditions), to this base logic, see Example 6. These formulas are transformed
into equivalent rules in the framework of the calculus for the base logic, e.g. HLJ. Adding
these rules to the calculus for the base logic gives analytic calculi for our logics.

Example 6. Gödel-Dummet logic GD is obtained from intuitionistic logic by

1. adding the Hilbert axiom (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ) to the calculus IntH , or
2. imposing on intuitionistic frames the condition of strong connectedness of the ac-

cessibility relation 6 (see Section 5.1 for the definitions): ∀x∀y∀z((x 6 y ∧ x 6
z)→ (y 6 z ∨ z 6 y))

Figure 3.2 shows how to define an analytic calculus for GD starting with the syntactic
definition 1., see above.

The crucial part in this procedure is the transformation of formulas into suitable
structural or logical rules to be added to the base calculus. Its key ingredients are:

20

Figure 3.2: Example: definition of an analytic calculus for Gödel-Dummet logic GD

Figure 3.3: Main page of TINC

(1) the use of the invertible rules of the base calculus, and
(2) the Ackermann lemma, which allows formulas to change the side of the sequent

by moving them from the rule conclusion to the rule premise. See the table below
for the chapters containing various versions of the Ackermann Lemma for specific
logics and calculi:

Base logic Base calculus Chapter

FLew Sequent calculus Chapter 4, Lemma 1
FLew Hypersequent calculus Chapter 4, Lemma 2
Int Hypersequent calculus Chapter 5, Lemma 4
Int Labelled calculus Chapter 5, Lemma 9
Cl+ Label-based sequent calculus Chapter 6, Lemma 14

21

TINC (see its main page in Figure 3.3) currently contains three tools that implement
this transformation procedure:

Tool Overview Chapter

AxiomCalc

• AxiomCalc takes as input Hilbert axioms defining a
substructural logic.
• The tool transforms these axioms into structural se-
quent or hypersequent rules, hence providing an ana-
lytic sequent or hypersequent calculus for the logic.
•Moreover, it exploits the generated calculus by check-
ing a sufficient condition for standard completeness of
the input logic.

Chapter 4,
Section 4.3.1

Framinator

• Framinator takes as input semantic specifications
(frame conditions) that define intermediate logics.
• The tool transforms these formulas into labelled
rules, hence providing a cut-free labelled sequent cal-
culus for the logic.

Chapter 5,
Section 5.4.1

Paralyzer

• Paralyzer takes as input large classes of Hilbert ax-
ioms defining paraconsistent (and related) logics.
• The tool transforms these axioms into sequent calcu-
lus rules.
•Moreover, it extracts non-deterministic, finite-valued
semantics from the obtained calculi. This new seman-
tics is also used to show the decidability of the logics
and reveal whether the calculi are analytic.
• Paralyzer also provides an encoding of the introduced
calculi for the proof-assistant Isabelle [138, 171] that
can be used for semi-automated proof search within
the considered logics.

Chapter 6,
Section 6.6.1

All tools generate papers written in LATEX that contain the resulting calculi, some
basic explanations about them and their applications.

3.2 Implementation Details

All three tools are implemented in the declarative programming language Prolog (in
particular, we used swi-prolog by Jan Wielemaker1). For the notions in this section (and
also for more detailed information), we refer to the Prolog standard references [158, 68].

1http://www.swi-prolog.org

22

http://www.swi-prolog.org

A (Very) Short Introduction to Prolog

The basic data structure in Prolog is a term, which is is an atom, a number, a variable
or a compound term:

• An atom starts with a lowercase latter or is enclosed in single quotes, like a, test,
or ’Something’.
• A number is an integer or a float.
• A variable can stand for an arbitrary term and starts with an uppercase letter or

an underscore _. Examples are A, _test or Something.
• A compound term consists of an atom called “functor” and a number of one or more

arguments which are again terms, such as, for instance, birthday(5,1,1989) or
married(’Patrizia’,’Ingmar’). Lists and strings are specific types of compound
terms. The former is an ordered collection of terms enclosed in square brackets [].
Its elements are separated by commas, e.g. [ultimate,frisbee,fun]. The latter
is a sequence of characters within double quotes, e.g. "Hello, World!".

Atoms and numbers are also called atomic terms, whereas atoms and compound terms
are referred to as predicates.

A logic program consists of a finite set of clauses, which are rules or facts. A rule is
a statement of the form

head :- body.

with the intuitive meaning “head is true if body is true”. The head consists of one
predicate, which can take any number of terms as arguments, and the body consists of
(possibly) several predicates. The predicates are also referred to as goals. Several goals
can be separated by a comma (,), which stands for the conjunction of the goals, or a
semicolon (;), which stands for the disjunction of the goals. A rule with an empty body,
i.e. a body not containing any goals, is a fact.

A query is a statement of the form

?- query.

It consists of one or more goals, also separated by commas or semicolons. Given a
query, Prolog will try to satisfy these goals based on the information that is given in the
program. If it succeeds, the query is a logical consequence of the program. Note however
that Prolog works according to the closed world assumption: only known statements are
true; statements that are not known are false.

In the following example, we show a small Prolog program to make these notions
clearer.

Example 7. The predicate child_of takes two arguments: the first is the child and the
second is the parent. We start our program by providing some facts using this predicate:

23

child_of(moses,marlene).
child_of(moses,nues).
child_of(dominik,patrizia).
child_of(dominik,ingmar).
child_of(lara,patrizia).

We can now pose the following query:

?- child_of(moses,nues).

Prolog will answer yes since we have this fact in our program. For the following
query, Prolog will return false because of the closed world assumption:

?- child_of(ingmar,emma).

We will now extend our Prolog program by defining the notion of a sibling:

sibling(X,Z) :- child_of(X,Y), child_of(Z,Y), X \= Z.

With this rule, we say that siblings must share at least one parent (child_of(X,Y)
and child_of(Z,Y)) and that someone can not be a sibling to himself (X \= Z). We can
now ask whether dominik has a sibling according to our program by using a variable:

?- sibling(dominik,Y).

Prolog tries to instantiate a value to this variable according to the knowledge provided
by the program. Indeed we will get the following answer:

Y = lara.

We can then also pose the following queries and will get the respective answers (note
that in the first case the predicates are concatenated by , while in the second case, we use
;):

?- sibling(moses,X),sibling(lara,Y).
false.

?- sibling(moses,X);sibling(lara,Y).
Y = dominik .

24

Figure 3.4: Representation of the hypersequent α1, . . . , αn ⇒ β | ϕ1, . . . , ϕm ⇒ ψ as a
list

Data structure

The data structure we will use for the representation of (hyper)sequents and rules are lists.
For instance, a single-conclusion sequent of the form ϕ1, . . . , ϕn ⇒ ψ (or ϕ1, . . . , ϕn ⇒) is
simply represented as a list of two elements where the first element (that is representing
the antecedent of the sequent) is another list:

[[_, _, _, _, _, ...], _]

A hypersequent is then considered a list of such lists. A single-conclusion hyperse-
quent of the form α1, . . . , αn ⇒ β | ϕ1, . . . , ϕm ⇒ ψ is then represented as follows (see
also Figure 3.4)

[[[alpha_1, ..., alpha_n], beta], [[phi_1, ..., phi_m], psi]]

Note however that in the formulation of hypersequent rules, the side hypersequent G is
omitted in the list representation.

Example 8. The list representation of the sequent ϕ1, ϕ2, ϕ3 ⇒ ψ is as follows (we use
a for ϕ1, b for ϕ2, c for ϕ3 and z for ψ):

[[a, b, c], z]

The list representation of the hypersequent G | ϕ1, ϕ2 ⇒| ψ1 ⇒ ψ2 is as follows (we
use a for ϕ1, b for ϕ2, c for ψ1 and d for ψ2):

[[[a, b], ’’], [[c], d]]

Rules are then represented as a list with two elements, where the first element is a
list containing the premises and the second element is a list containing the conclusion.

Example 9. Consider the following sequent rule application of (∨, l):

α,ϕ1 ⇒ β α, ϕ2 ⇒ β

α, ϕ1 ∨ ϕ2 ⇒ β

25

Figure 3.5: General structure of TINC

Its representation as a list is as follows (we use a for α, b for β, c1 for ϕ1 and c2
for ϕ2):

[[[[a,c1],b], [[a,c2],b]], [[a,c1 v c2],b]]

Recall the application of the hypersequent rule (com) as used in Example 5:

ϕ⇒ ϕ ψ ⇒ ψ

ϕ⇒ ψ | ψ ⇒ ϕ

We can represent it in our list notation in the following way (we use a for ϕ and b
for ψ):

[[[[[a],a]], [[[b],b]]], [[[a],b], [[b],a]]]

Analogously, multiple-conclusion sequents will be represented as lists of two elements
with the second element being a list as well.

Design of TINC

The implementation of all TINC-tools follows the structure depicted in Figure 3.5. Here
we only give an outline of the general design of TINC — we will explain the specific
instantiations for the implementation of each tool in the respective tool-section.

We provide two interfaces for TINC: the standard command-line interface for users
who want to run the tools on their own computer and a web interface. The user provides
the input formula for the tools via the respective interface. The input formula is a
formula of a specific form depending on the class of logics the tool can handle. It is given
as parameter to the first component, checkInput, which checks whether the input is
correct according to the syntactic requirements of the input formula.

The second component, computeRules, is the core component of the whole tool.
It contains the implementation of the algorithm to transform the input formula into an
equivalent set of rules (recall the transformation step in Figure 3.1).

The third component, exploit, is optional. When present in the tool, it implements
methods that utilize the computed calculus to establish properties of the formalized logic.

The fourth and last component, printOutput, contains everything that is related
to presenting the results to the user: it prints the results of the transformation procedure

26

and the investigation either on the command-line or on the web interface. Moreover, it
also produces a paper written in LATEX, which contains the obtained calculus and the
results of the exploit-component.

Input and checkInput

The input formula is provided by the user following a tool-specific syntax. The component
checkInput then contains methods to:

(i) check if the input is indeed a formula, and
(ii) check whether the input formula satisfies certain criteria to be transformed by our

algorithm.

In step (i), we perform a basic syntax check to see if the input indeed has the shape of
a formula of the defined language. To implement this, we use a definite clause grammar
(DCG) to (a) check whether the input can be parsed as a formula, and (b) rewrite the
input formulas to LATEX-code, which will be used for the output later. An example of a
DCG can be seen in Code Example 1 in Section 4.3.1 on page 52.

If the input formula does not pass the syntactic checks (i) or (ii), an error message is
printed on the screen.

computeRules and exploit

The component computeRules contains the implementation of the algorithm to trans-
form the input formula into an equivalent rule. For more information on the implemen-
tation of the transformation procedure, see Code Example 4 in Section 5.4.1 on page 95
and Code Example 5 in Section 6.6.1 on page 139.

The optional component exploit (recall Figure 3.5) is currently only implemented
for the tools AxiomCalc and Paralyzer. We will give more details on its implementation
in the respective tool section of Chapters 4 and 6.

Output and printOutput

The component printOutput contains the implementation of the presentation of the
results. The results (the obtained calculus and – if applicable – the results of the exploit
component) are (1) printed on the command-line or on the web interface, and (2) sum-
marized in a LATEX-paper, which can be downloaded from the web when generated by the
web interface. See Code Example 3 in Section 4.3.1 on page 55 for the implementation
of the LATEX-paper generation.

3.2.1 Overview Code Examples

The following table gives an overview of the various code examples and their location in
this thesis. Note that we only present code snippets to give an intuition of the imple-
mentation – for greater detail see the source code, which is freely available at

27

http://www.logic.at/tinc

Component Method Tool Chapter

checkInput axiom2tex AxiomCalc Chapter 4, Code Example 1
computeRules isClass Framinator Chapter 5, Code Example 4
computeRules axioms2rules Paralyzer Chapter 6, Code Example 5
exploit isConvergent AxiomCalc Chapter 4, Code Example 2
exploit isAnalytic Paralyzer Chapter 6, Code Example 6
printOutput texOut AxiomCalc Chapter 4, Code Example 3

3.3 Related Work

One of the first milestones to advance the development of tools for the design of application-
oriented logics are the papers [139, 140], which focus on computer support for the gen-
eration and investigation of logics. These papers describe several approaches for auto-
mated methods in various fields of logic, including reasoning in Hilbert systems or the
translation of Hilbert axioms into frame properties and vice versa. The methods are
further assisted by the usage of tools like the automated theorem prover Otter [103]
(the predecessor of Prover9 [125]) and the implementation of the SCAN-algorithm2 [84]
for quantifier-elimination in second-order logic. Since then, several new or extended
approaches and implementations to provide automated support for the development
and investigation of non-classical logics have been provided. A website containing a
(non-exhaustive) list of computational tools for (mainly) modal logics is, for example,
http://www.cs.man.ac.uk/~schmidt/tools/.

We give an overview of selected tools that implement theoretical results in proof
theory and can be considered “logic engineering tools” in the spirit of [139]. The common
aim that these tools share with TINC is that they can be used for finding and/or
investigating non-classical logics in an automated way. Note also that our listing is by no
means complete: we only present tools that could possibly be used together with TINC
(i.e., with AxiomCalc, Framinator or Paralyzer).

MUltlog and MUltseq. The predecessor of TINC is the Prolog program MUlt-
log3 [22], which introduces analytic calculi automatically for the class of finitely-valued
logics. MUltlog takes as input the specification of a finitely-valued first-order logic and
produces as output a paper written in LATEX containing a sequent calculus, a natural
deduction system and clause formation rules for the specified logic.

The Prolog tool MUltseq4 [89] is a generic sequent prover for propositional many-
valued logics and was initially intended to accompany MUltlog. MUltseq takes as input

2http://www.mettel-prover.org/scan
3http://www.logic.at/multlog/
4http://www.logic.at/multseq/

28

http://www.logic.at/tinc
http://www.cs.man.ac.uk/~schmidt/tools/
http://www.mettel-prover.org/scan
http://www.logic.at/multlog/
http://www.logic.at/multseq/

(1) the rules of a many-valued sequent calculus (as e.g. produced by the system MUlt-
log) and (2) sequents or formulas, and then decides the validity of the latter. Moreover,
it is possible to decide the consequence relations associated with the logic and the se-
quent calculus given as input. Unfortunately, both tools (MUltlog and MUltseq) are not
maintained any more.

MUltlog and the tools of TINC are rather unique since they start from the specifica-
tion of a logic and create (and investigate) an analytic calculus based on this specification.
Many of the other logic engineering tools that are currently available start already with
the calculus for a logic and investigate it.

Investigative Tools: TATU and QUATI. The tool TATU 5 [136], which is
implemented in OCaml, is a logic engineering tool that allows to reason about sequent
calculi of a specific form. It takes as input an encoding of a proof system in the framework
of linear logic with subexponentials (SELLF) [135]. TATU then automatically checks
whether the specified proof system admits cut elimination, i.e. whether the system is
analytic, and whether it is complete using only atomic axioms. Encodings for sequent
calculi of some logics have already been provided, e.g. a multiple-conclusion calculus
for intuitionistic logic, or proof systems for modal logic S4 or intuitionistic Lax logic.
However, the encodings have to be found manually and require some basic theoretical
knowledge from the user.

Similar to TATU, the system QUATI 6 [137] takes as input the encoding of a sequent
calculus (of a specific form) in SELLF. QUATI then allows us to prove permutation
lemmas for the encoded proof system, which is usually a tedious exercise. The tool com-
putes this automatically and gives as output the permutation transformation in LATEX.
QUATI is implemented in OCaml and makes use of the DLV system7.

Once we have obtained an analytic calculus for a logic, we naturally would like to use
it to do automated proof search. For this, we can either use interactive theorem provers
(see the last paragraph below), or simpler tools that are easier to handle, but might also
be more restricted in their functionality. In recent years, several generic tableau provers
have been introduced that fall into this latter category.

Tableau Provers: Tableaux WorkBench, LoTREC and MetTeL.
The Tableaux WorkBench8 [1], which is implemented in OCaml, is a generic tableau

prover allowing the user to specify his own rules and strategies to experiment with proof
search. It can handle propositional modal-type logics, such as the modal logics K and
S4, or computational tree logic CTL.

Similarly, the system LoTREC 9 [87], implemented in Java, aims at providing tableau
provers for logics with Kripke semantics – in particular modal and description logics.

5https://www.logic.at/staff/giselle/tatu/
6https://www.logic.at/staff/giselle/quati/
7http://www.dlvsystem.com/dlv/
8http://twb.rsise.anu.edu.au
9http://www.irit.fr/ACTIVITES/LILaC/Lotrec/

29

https://www.logic.at/staff/giselle/tatu/
https://www.logic.at/staff/giselle/quati/
http://www.dlvsystem.com/dlv/
http://twb.rsise.anu.edu.au
http://www.irit.fr/ACTIVITES/LILaC/Lotrec/

It works analogous to the Tableaux WorkBench, as it allows the user to determine the
tableau rules and the search strategy. The main difference between the two tools is
their approach: while the Tableaux WorkBench is based on a purely syntactic tableau
algorithm, LoTREC is semantic-based and tries to build (counter-)models for a proof.

Another tableau prover for various propositional modal-type logics is the Java-tool
MetTeL10 [163]. It also allows the user to specify his own rules of a tableau calculus and
use MetTeL to generate a prover for it. Its successor MetTeL2 [164] generates tableau
provers from the user specification of a tableau calculus for a logic. MetTeL2 extends
its predecessor not only by allowing a flexible specification language (that is, in contrast
to MetTeL, not restricted to a fixed set of logical operators), but also by adding several
more features to optimize proof search.

Proof Assistants: Isabelle, COQ and TWELF. To complete the picture, we
briefly mention another important category of software tools, namely proof assistants.
Prominent examples are Isabelle11 [171], COQ12 [37], or TWELF 13 [147]. Proof as-
sistants are more general (and, thus, more complex) than automated theorem provers.
While the latter allow to do proof search within a specific logic automatically, the for-
mer require interaction with the user. Hence they are also called interactive theorem
provers. Proof assistants usually utilize higher-order logics for the development of proofs
of mathematical statements.

These powerful systems can also be used to perform interactive proof search within
or to reason about a logic. This is achieved by first encoding the calculus of a logic in
the (higher-order logic of the) proof assistant. Here we have to distinguish between a
shallow and a deep embedding of the logic:

In a shallow embedding, the calculus is encoded by a more or less direct translation
into the logic of the respective proof assistant. It is easier to achieve and allows to prove
theorems within the logic. For example in [35], Gödel’s argument for the existence of
God has recently been formalized (amongst others) in Isabelle/HOL by using a shallow
embedding of higher-order modal logic [86].

In a deep embedding, syntax and semantics of the logic are modelled separately in the
meta-language of the proof assistant. Even though a deep embedding is more complicated
to establish, it enables the user to reason about properties of the (calculus of the) logic
and prove proof-theoretic results such as soundness, completeness, or cut elimination,
e.g. see [66, 67, 162].

10http://www.mettel-prover.org/
11https://isabelle.in.tum.de/
12http://coq.inria.fr/
13http://twelf.org/

30

http://www.mettel-prover.org/
https://isabelle.in.tum.de/
http://coq.inria.fr/
http://twelf.org/

CHAPTER 4
Substructural Logics

Substructural logics are logics lacking some (or all) of the structural rules when formal-
ized as sequent systems. They encompass, among others, classical, intuitionistic, fuzzy,
intermediate, linear or relevant logics. Substructural logics provide languages for mod-
elling dynamic data structures or resources and are therefore of particular interest for
various areas of computer science. Moreover, they are also widely studied in other fields,
such as philosophy (in particular relevant logic) or linguistics (e.g., the Lambek calculus,
which is used to represent linguistic expressions).

In this chapter, we present an application of the analytic calculi that are generated
by the procedure in [52] for axiomatic extensions of the logic MTL [78]. We explain
how to use the obtained calculi to investigate the corresponding logics, in particular, to
check in an automated way whether they are standard complete, i.e., whether the logics
are complete with respect to algebras based on truth values in [0, 1]. We also show the
implementation of this result in the TINC-tool AxiomCalc.

We start the chapter by recalling the basic logic we deal with: (propositional) sub-
structural logic FLew (Section 4.1). In Section 4.2, we give an overview of related work
in proof theory that focuses on the (automated) introduction of analytic calculi for sub-
structural logics. In particular, we present the systematic procedure from [52], which
forms the theoretical base for the other algorithms that are introduced in this thesis. In
Section 4.3, we utilize the calculi generated by this procedure for axiomatic extensions
of MTL and identify properties that ensure standard completeness of the corresponding
logics. The check of these properties is completely automatized in our tool AxiomCalc,
which we describe in Section 4.3.1.

The results of this chapter are contained in [28].

4.1 Preliminaries

We use the language LFLew, i.e. the language of Full Lambek calculus with exchange and
weakening. LFLew consists of infinitely many (possibly indexed) propositional variables

31

p, q, . . ., the binary connectives ∧ (additive conjunction), · (multiplicative1 conjunction or
fusion), ∨ (disjunction), ⊃ (implication) and the constants > and ⊥. Formulas are built
from propositional variables and constants by using the logical connectives. As usual, we
abbreviate α ⊃ ⊥ to ¬α. In the following, (possibly indexed) ϕ,ψ, χ, α, β, . . . will stand
for (metavariables for) formulas and (possibly indexed) Γ,∆,Σ,Θ,Λ, . . . denote multisets
of formulas. To distinguish between rule applications and rule schemas, (only) in this
chapter we denote metavariables for multisets of formulas with Γ,∆,Σ,Θ,Λ,

We use the following notation for formulas and (metavariables for) multisets of for-
mulas with n ≥ 0:

ϕn =

n︷ ︸︸ ︷
{ϕ, . . . , ϕ} and Σn =

n︷ ︸︸ ︷
{Σ, . . . ,Σ} and Σ

n
=

n︷ ︸︸ ︷
{Σ, . . . ,Σ}

The Substructural Logic FLew

Basic substructural systems are defined by removing the structural rules from the calclus
LJ for (propositional) intuitionistic logic Int. Recall the standard sequent calculus for
LJ (see Table 2.1 in Chapter 2) and its structural rules (w, l), (w, r) and (c, l). Moreover,
recall the exchange rule, which is implicitly used in LJ since we use multisets of formulas:

Γ, ψ, ϕ,Σ⇒ Π
(e, l)

Γ, ϕ, ψ,Σ⇒ Π

If we remove all of these structural rules from LJ ((e, l) is “removed” by using se-
quences instead of multisets of formulas), we retrieve the system for the most basic
substructural logic, Full Lambek calculus FL [113], that is non-commutative intuition-
istic linear logic without exponentials. If we remove the rules for contraction from LJ,
we obtain the system for Full Lambek calculus with exchange and weakening, FLew
(intuitionistic linear logic with weakening and without exponentials). We will use FLew
as base logic in this chapter.

By removing some or all of these structural rules, the number of formulas (due to
missing weakening and/or contraction rules) and the order of formulas (due to missing
exchange rules) in a sequent matters. This also leads to a different interpretation of
the comma “,” in a sequent (note that in this chapter we only consider single-conclusion
sequents): in Int, the comma of an arbitrary sequent is interpreted as the additive
conjunction in the antecedent. However, when the contraction or weakening rules are
missing, it is interpreted as the multiplicative conjunction “·”. E.g., the interpretation of
a sequent in FLew is as follows:

Definition 19. In the substructural logic FLew, a sequent

S = Γ⇒ Π

1We refer to [165] for the terminology of “additive” and “multiplicative”.

32

ϕ⇒ ϕ

Γ⇒
Γ⇒ ϕ

(w, r)
Γ, ϕ, ψ ⇒ Π

Γ, ϕ · ψ ⇒ Π
(·, l) Γ⇒ ϕ ∆⇒ ψ

Γ,∆⇒ ϕ · ψ
(·, r)

⊥ ⇒
Γ⇒ Π

Γ, ϕ⇒ Π
(w, l)

Γ, ϕ⇒ ψ

Γ⇒ ϕ ⊃ ψ
(⊃, r) Γ⇒ ϕ ψ,∆⇒ Π

Γ, ϕ ⊃ ψ,∆⇒ Π
(⊃, l)

⇒ >
Γ⇒ ϕi

Γ⇒ ϕ1 ∨ ϕ2

(∨i, r)
Γ, ϕi ⇒ Π

Γ, ϕ1 ∧ ϕ2 ⇒ Π
(∧i, l)

Γ⇒ ϕ Γ⇒ ψ

Γ⇒ ϕ ∧ ψ
(∧, r)

Γ⇒
Γ⇒ ⊥

(⊥, r) Γ⇒ Π

Γ,> ⇒ Π
(>, l) Γ⇒ ϕ ϕ,∆⇒ Π

Γ,∆⇒ Π
(cut)

Γ, ϕ⇒ Π ∆, ψ ⇒ Π

Γ,∆, ϕ ∨ ψ ⇒ Π
(∨, l)

i ∈ {1, 2}; Π is a metavariable for a multiset containing at most one formula.

Table 4.1: Sequent calculus FLew

is interpreted as
I(S) =

⊙
Γ ⊃ Π

where
⊙

Γ stands for the multiplicative conjunction of the formulas in Γ (> when Γ is
empty), and Π is one formula (⊥ when Π is empty).

The sequent calculus FLew for FLew is then obtained by removing from LJ the
structural rule for contraction (c, l) and adding the rules for ·, see Table 4.1.

Systems for substructural logics can also be defined by removing some of the structural
rules from the standard sequent calculus for classical propositional logic, LK [88]. E.g,
CFLe (or MALL) is the multiplicative and additive fragment of linear logic introduced
in [90]. Its sequent system is obtained by removing the structural rules for weakening
and contraction from LK. However, in this chapter we only concentrate on extensions of
FLew.

Examples of Substructural Logics

Generally speaking, a substructural logic is any axiomatic extension of FL. Below we
list some examples of substructural logics obtained by extending FLew.

Logic Axiomatization

Int Intuitionistic logic FLew+ϕ ⊃ ϕ · ϕ
MTL Monoidal t-norm logic [78] is the

logic of left continuous t-norms and
their residua.

FLew+(ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ)

33

GD Gödel-Dummett logic [91, 71] is the
logic of linear order and one of the
main fuzzy logics.

Int+(ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ) or
MTL+ϕ ⊃ ϕ · ϕ

SMTL Strict MTL [77] is the logic of left-
continuous t-norms satisfying the
pseudo-complementation property.

MTL+¬ϕ ∨ ¬¬ϕ

WNM Weak nilpotent minimum logic [78] is
the logic of left-continuous t-norms
satisfying the weak nilpotent mini-
mum property.

MTL+¬(ϕ · ψ) ∨ (ϕ ∧ ψ ⊃ ϕ · ψ)

BL Basic logic [97] characterizes logics
based on continuous t-norms.

MTL+(ψ · (ψ ⊃ ϕ)) ⊃ (ϕ · (ϕ ⊃ ψ))

Ł Łukasiewicz logic [119, 120] is the
logic of magnitude and also one of
the main fuzzy logics.

FLew+((ϕ ⊃ ψ) ⊃ ψ) ⊃ ((ψ ⊃
ϕ) ⊃ ϕ) or
BL+¬¬ϕ ⊃ ϕ

4.2 Theoretical Base and Related Work in Proof Theory

Cut-free calculi for substructural logics are traditionally introduced on a case-by-case
basis, tailored to the specific logic at hand. As mentioned in the introduction, this is
usually achieved by the following three steps:

(i) Choose or define a suitable formalism,
(ii) find suitable rules for formalizing the specific logic under consideration, and
(iii) prove soundness, completeness and cut-elimination for the defined calculus.

As a consequence, there are many papers devoted to the introduction of an analytic
calculus for a specific logic, see e.g. [11, 141, 21, 128, 126, 127] for a rather incomplete
list.

To move the introduction of analytic calculi from a logic-specific to a more systematic
manner, general methods are needed. Such methods have been investigated e.g. in the
following works:

Goré [93, 92] utilizes the formalism of display calculus [34] to capture some substruc-
tural logics in a unified way. In [93], generalized cut-free display calculi are given for
(intuitionistic) Bi-Lambek calculus2 [114] and its extensions with few structural rules.
In [92], this idea is generalized and display calculi are extracted by starting from the
algebraic Gaggle-theoretic3 semantics of a logic.

2(Intuitionistic) Bi-Lambek calculus is (intuitionisic) Lambek calculus extended with duals of each
logical connective of the Lambek calculus.

3Gaggle Theory generalizes the algebraic notions of residuation and Galois connections to obtain a
uniform relational semantics for a substructural logic, see [74, 75].

34

Three other semantic-based approaches to provide analytic calculi are presented
in [131], [121] and [64] (note however that the latter two allow analytic cuts in their
obtained calculi). In [131], labelled sequent calculi are introduced for basic relevant logic
and its extensions. The method turns frame properties of a specific shape, which charac-
terize the considered logics, into equivalent labelled sequent rules. Note that we discuss
this semantic approach in greater detail for intermediate logics (Chapter 5).

In [121], which extends the method in [142], relational proof systems for substructural
logics are introduced by using relational semantics where the formulas are interpreted as
ternary relations. The obtained relational proof systems, which are tableau-style theorem
provers, are provided for extensions of FL and for linear logic with exponentials.

In [64], a combination of (a generalized version of) the classical refutation system
KE [65] with labelled deductive systems [83] is used to provide a “uniform and transparent
system of analytic deduction” for substructural logics. The basic idea of this “labelled
analytic deduction” is to represent the deduction problems in the algebra of the labels
and seek for a solution of algebraic equations among the labels.

Even though these approaches are interesting, we do not go into too much detail here.
Instead, we concentrate on the systematic procedure of converting axioms into sequent
and hypersequent calculi, which serves as the starting point for the methods established
in this thesis.

Theoretical Base: A Systematic Procedure

In Chapter 3, we already gave the general idea of the procedure to obtain analytic calculi
for large classes of logics. In this section, we present the method of [52] where this idea
was originally introduced for substructural logics. It transforms Hilbert axioms defining
substructural logics into equivalent structural sequent and hypersequent rules.

The foundation for the systematic procedure in [52] is the substructural hierarchy.
It is based on the polarity [5] of logical connectives of the base sequent calculus FLew.
Their negative or positive polarities depend on whether their right or left logical rule is
invertible4. The logical connectives of FLew can be divided into two groups of negative
(⊃,∧,⊥) and positive (·,∨,>) connectives. Axioms with an outermost logical connective
of positive (negative, resp.) polarity belong to a positive class P (negative class N ,
resp.) of the hierarchy and each class contains an infinite number of axioms. The
intuition behind this classification is that the different classes account for the difficulty
to deal with the corresponding axioms proof theoretically (and, as shown in [54], with the
preservation under suitable order theoretic completions of the corresponding algebraic
equations). Note that this procedure was originally introduced using FL as base logic [54]
and is described below in its simplified version based on FLew.

4A rule is invertible when the premises are derivable from the conclusion of the rule.

35

Figure 4.1: The substructural hierarchy [52]

Definition 20 ([52]). Let A0 be a set of atomic formulas. For n ≥ 0, the sets Pn,Nn of
formulas are defined as follows:

P0 ::= N0 ::= A0

Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | >
Nn+1 ::= Pn | Pn+1 ⊃ Nn+1 | Nn+1 ∧Nn+1 | ⊥

A graphical representation of the substructural hierarchy is depicted in Figure 4.1.
Note that the arrows → stand for inclusions ⊆ of the classes.

Example 10. Examples of Hilbert axioms and their classification within the substructural
hierarchy:

Name Axiom Class
weakening (w), (w′) ϕ ⊃ >, ⊥ ⊃ ϕ N2

contraction (c) ϕ ⊃ ϕ · ϕ N2

weak contraction (wc) ¬(ϕ ∧ ¬ϕ) N2

excluded middle (em) ϕ ∨ ¬ϕ P2

prelinearity (prel) (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ) P2

Łukasiewicz axiom (Ł) ((ϕ ⊃ ψ) ⊃ ψ) ⊃ ((ψ ⊃ ϕ) ⊃ ϕ) N3

Nelson axiom (nel) ((ϕ · ϕ · ϕ ⊃ ψ) ∧ (¬ψ · ¬ψ · ¬ψ ⊃ ¬ϕ)) ⊃ (ϕ ⊃ ψ) N3

weak excluded middle (wem) ¬ϕ ∨ ¬¬ϕ P3

weak nilpotent minimum (wnm) ¬(ϕ · ψ) ∨ (ϕ ∧ ψ ⊃ ϕ · ψ) P3

Kripke model with 2 worlds (bc2) ϕ0 ∨ (ϕ0 ⊃ ϕ1) ∨ (ϕ0 ∧ ϕ1 ⊃ ϕ2) P3

Since the transformation procedure introduced in [52] works up to the classes N2 and
P3 of the substructural hierarchy, the normal form of axioms within these classes is of
particular interest:

36

N2: Axioms have the form
∧

1≤i≤n δi, in which every δi is a α1 · · ·αm ⊃ β
where:
– β = ⊥ or β1 ∨ · · · ∨ βk and each βl is a multiplicative conjunction of
propositional variables and

– each αi is of the form
∧

1≤j≤p γ
j
i ⊃ β

j
i where

◦ βji = ⊥ or a propositional variable, and
◦ γji is a multiplicative conjunction or a disjunction of propositional
variables (or >).

P2: Axioms have the form
∨

1≤i≤n δi, where each δi is of the form∧
1≤j≤m αj ⊃ βj or

∧
1≤j≤m αj where:

– each αj is a multiplicative conjunction or disjunction of propositional
variables and >, and

– βj = ⊥ or a propositional variable.
P3: Axioms have the form δ1 ∨ · · · ∨ δn, where each δi is in N2.

From Axioms to Analytic Rules

The procedure in [52] transforms each axiom within the classN2 into equivalent structural
sequent calculus rules that preserve cut elimination when added to the calculus FLew.
These rules are however not powerful enough to capture axioms beyond the class N2.
Indeed, as shown in [52, 54], they can only formalize properties that are already valid in
intuitionistic logic ([52]) and among them only those corresponding to algebraic equations
which are closed under the order theoretic completion known as Dedekind-MacNeille
completion5 in the context of integral residuated lattices ([54]). These results ensure,
for instance, that no structural sequent rule can capture the prelinearity axiom, which is
within P2 (see Example 10).

For axioms up to the class P3, the transformation procedure is adapted to a different
base calculus, namely to the hypersequent calculus HFLew depicted in Table 4.2. These
axioms can then be transformed into equivalent structural hypersequent rules. The calculi
are obtained by adding the generated rules to the base sequent calculus FLew and the
base hypersequent calculus HFLew, respectively.

The transformation procedure uses the following two key ingredients (recall the gen-
eral procedure described in Chapter 3):

(1) the invertible logical rules of the base calculus FLew (or HFLew), that are (∨, l),
(·, l), (>, l), (⊥, r), (⊃, r), and (∧, r).

(2) the Ackermann lemma for FLew :

Lemma 1 ([52]). Let Φ1, . . . ,Φm be (meta)sequents consisting of metavariables,
and ψ1, . . . , ψn ⇒ ξ be metavariables for formulas. Then the rules

5Dedekind-MacNeille completion generalizes Dedekind’s embedding of the rational numbers into the
reals to various ordered algebraic structures [122].

37

ϕ⇒ ϕ

G | Γ⇒
G | Γ⇒ Π

(w, r)
G | ϕ,ψ,Γ⇒ Π

G | ϕ · ψ,Γ⇒ Π
(·, l) G | Γ⇒ ϕ G | ∆⇒ ψ

G | Γ,∆⇒ ϕ · ψ
(·, r)

⇒ >
G | Γ⇒ Π

G | Γ, ϕ⇒ Π
(w, l)

G | ϕ,Γ⇒ ψ

G | Γ⇒ ϕ ⊃ ψ
(⊃, r) G | Γ⇒ ϕ G | ψ,∆⇒ Π

G | Γ, ϕ ⊃ ψ,∆⇒ Π
(⊃, l)

⊥ ⇒
G | Γ⇒
G | Γ⇒ ⊥

(⊥, r) G | ϕi,Γ⇒ Π

G | ϕ1 ∧ ϕ2,Γ⇒ Π
(∧, l) G | Γ⇒ ϕ G | Γ⇒ ψ

G | Γ⇒ ϕ ∧ ψ
(∧, r)

G | Γ⇒ Π

G | Γ,> ⇒ Π
(>, l) G | Γ⇒ ϕi

G | Γ⇒ ϕ1 ∨ ϕ2

(∨, r) G | ϕ,Γ⇒ Π G | ψ,Γ⇒ Π

G | ϕ ∨ ψ,Γ⇒ Π
(∨, l)

G

G | Γ⇒ Π
(ew)

G | Γ⇒ Π | Γ⇒ Π

G | Γ⇒ Π
(ec)

G | Γ⇒ ϕ G | ϕ,∆⇒ Π

G | Γ,∆⇒ Π
(cut)

i ∈ {1, 2}, Π is a metavariable for a multiset containing at most one formula.

Table 4.2: Hypersequent calculus HFLew for FLew

Φ1 · · · Φm

ψ1, . . . , ψn ⇒ ξ

Φ1 · · · Φm ξ ⇒ β

ψ1, . . . , ψn ⇒ β

Φ1 · · · Φm α1 ⇒ ψ1 · · · αn ⇒ ψn
α1, . . . , αn ⇒ ξ

are equivalent by (cut) and the identity axiom, where α1, . . . , αn, β are fresh metavari-
ables for formulas.

and the Ackermann lemma for HFLew :

Lemma 2 ([52]). Let Φ,Φ1, . . . ,Φm be (meta)hypersequents consisting of metavari-
ables, Υi be a fresh metavariable αi or Γi and Υ ⇒ Ξ is either ⇒ β or Σ ⇒ Π
with β,Σ,Π fresh (Π is either one formula or empty). Then the following rules are
equivalent:

G | Φ1 · · · G | Φm

G | Φ | ψ1, . . . , ψn ⇒ ξ

G | Φ1 · · · G | Φm G | Υ1 ⇒ ψ1 · · · G | Υn ⇒ ψn

G | Φ | Υ1, . . . ,Υn ⇒ ξ

G | Φ1 · · · G | Φm G | ξ,Υ⇒ Ξ

G | Φ | ψ1, . . . , ψn,Υ⇒ Ξ

These ingredients are then integrated in the transformation procedure, which is de-
scribed in an informal way as follows. Given any axiom ϕ ∈ N2 or ϕ ∈ P3:

38

(i) If ϕ ∈ N2, we start with the sequent⇒ ϕ. If ϕ ∈ P3, its normal form is a disjunction
of formulas of the form ϕ1∨· · ·∨ϕn where each ϕ1, . . . , ϕn is withinN2. In this case,
we start with the hypersequent G |⇒ ϕ1 | · · · |⇒ ϕn. By utilizing the invertibility
of the logical rules, we decompose ϕ as much as possible and obtain an equivalent
set of (hyper)sequent rules R without premises. As an example, consider the axiom
for weak contraction ¬(ϕ ∧ ¬ϕ) ∈ N2:

⇒ (ϕ ∧ (ϕ ⊃ ⊥)) ⊃ ⊥ −→(i)
ϕ ∧ (ϕ ⊃ ⊥)⇒ ⊥

−→(i)
ϕ ∧ (ϕ ⊃ ⊥)⇒

(ii) Next, we apply the Ackermann lemma (Lemma 1 or Lemma 2) to each r ∈ R to
change side of the sequents of those formulas that cannot be decomposed by logical
rules in their current position. Continuing our example, we move ϕ ∧ (ϕ ⊃ ⊥) to
the succedent of a premise and get

−→(ii) α⇒ ϕ ∧ (ϕ ⊃ ⊥)
α⇒

(iii) Then we utilize again the invertibility of the logical rules to decompose the com-
pound formulas in the premises of each rule, resulting in a set of structural (hy-
per)sequent rules Rs. In the previous example, we get:

−→(iii) α⇒ ϕ α⇒ ϕ ⊃ ⊥
α⇒ −→(iii) α⇒ ϕ α,ϕ⇒

α⇒

(iv) The final step is a completion procedure to transform the structural rules result-
ing from steps (i)–(iii) into equivalent rules that preserve cut-elimination and the
subformula property once they are added to the base calculus. This completion
procedure again contains three more steps (here we describe the completion pro-
cedure for hypersequent rules; it works analogously for sequent rules, as shown in
the running example):

(iv.a) In the preliminary step, each metavariable for multisets of formulas Γ or Π
(where Π is a metavariable for a multiset containing at most one formula)
is replaced by a fresh metavariable βΓ or βΠ for formulas. This step can be
skipped if the structural rule does not contain any Γ, nor Π.

(iv.b) In the restructuring step, we replace each component

(α1, . . . , αn ⇒ β)

in its conclusion with
(Γ1, . . . ,Γn,Σβ ⇒ Πβ)

39

and add n+ 1 premises

(G | Γ1 ⇒ α1), . . . , (G | Γn ⇒ αn), (G | β,Σβ ⇒ Πβ)

where Γ1, . . . ,Γn,Σβ,Πβ are fresh and mutually distinct metavariables and
Πβ is a metavariable for a multiset containing at most one formula. Similarly,
we replace each component

(α1, . . . , αn ⇒)

with
(Γ1, . . . ,Γn ⇒)

and add n premises

(G | Γ1 ⇒ α1), . . . , (G | Γn ⇒ αn)

Back to our example, we get:

−→(iv.b) α⇒ ϕ α,ϕ⇒ Γ⇒ α

Γ⇒
(iv.c) In the cutting step, we remove all the constants and variables that appear in

the premises and not in the conclusion. When such variables appear on the
left and on the right hand side of different premises, we close the obtained
rules under all possible applications of (cut): Let each Υ denote either a
metavariable for a formula or for a multiset of formulas and each Ξ is either
empty or a metavariable for a formula. Let S be the set of premises of the
structural rule for a formula α not occurring in the conclusion, let SS = {G |
Υ′i ⇒ α : 1 ≤ i ≤ k} (SA = {G | Υj , α, . . . , α ⇒ Ξj : 1 ≤ j ≤ m}, resp.) be
the subset of premises which have one occurrence of α in the succedent (one or
more occurrences of α in the antecedent and Υj does not contain α, resp.). If
SS = ∅ (SA = ∅, resp.), we remove all premises in SA (SS , resp.) from S. Else,
let Scut be the set of all hypersequents of the form G | Υj ,Υ

′
i1
, . . . ,Υ′ip ⇒ Ξj

where 1 ≤ j ≤ m and 1 ≤ i1, . . . , ip ≤ k. By replacing SS ∪ SA with Scut,
we obtain a new structural rule. This step is repeated until all variables not
occurring in the conclusion are removed.
For the rule above we therefore get:

−→(iv.c) Γ⇒ ϕ Γ, ϕ⇒
Γ⇒

−→(iv.c) Γ,Γ⇒
(wc)

Γ⇒

By adding the rule (wc) to FLew , we obtain a sound and complete calculus for the
logic FLew extended with the axiom for weak contraction where the cut rule is
admissible. For example, the axiom for weak contraction is indeed derivable in the
new calculus:

40

ϕ⇒ ϕ
⊥ ⇒ (w, r)⊥ ⇒ ⊥

(⊃, l)
ϕ,ϕ ⊃ ⊥ ⇒ ⊥

(∧, l)
ϕ ∧ (ϕ ⊃ ⊥), ϕ ∧ (ϕ ⊃ ⊥)⇒ ⊥

(wc)
(ϕ ∧ (ϕ ⊃ ⊥))⇒ ⊥

(⊃, r)⇒ (ϕ ∧ (ϕ ⊃ ⊥)) ⊃ ⊥

Theorem 3 ([52]). Given any axiom ϕ ∈ N2 (ϕ ∈ P3, resp.), the rules generated by
the algorithm in [52] are sound and complete for the substructural logic axiomatized by
FLew + ϕ and they preserve cut elimination when added to the sequent calculus FLew
(hypersequent calculus HFLew, resp.).

Example 11. The axiom for weak nilpotent minimum ¬(ϕ · ψ) ∨ (ϕ ∧ ψ ⊃ ϕ · ψ) (cf.
Example 10) is within the class P3. The algorithm constructs an equivalent structural
hypersequent rule as follows:

G |⇒ (ϕ · ψ) ⊃ ⊥ |⇒ ϕ ∧ ψ ⊃ ϕ · ψ →(i)
G | ϕ · ψ ⇒ ⊥ | ϕ ∧ ψ ⇒ ϕ · ψ

→(i)
G | ϕ,ψ ⇒| ϕ ∧ ψ ⇒ ϕ · ψ →(ii) G | α⇒ ϕ ∧ ψ G | ϕ · ψ ⇒ β

G | ϕ,ψ ⇒| α⇒ β

→(iii) G | α⇒ ϕ G | α⇒ ψ G | ϕ,ψ ⇒ β
(wnms)

G | ϕ,ψ ⇒| α⇒ β

→(iv.b) G | α⇒ ϕ

G | Γ⇒ ϕ

G | α⇒ ψ

G | ∆⇒ ψ

G | ϕ,ψ ⇒ β

G | Λ⇒ α

G | Σ, β ⇒ Π

G | Γ,∆⇒| Λ,Σ⇒ Π

→(iv.c)

G | Λ⇒ ϕ

G | Γ⇒ ϕ

G | Λ⇒ ψ

G | ∆⇒ ψ G | ϕ,ψ,Σ⇒ Π

G | Γ,∆⇒| Λ,Σ⇒ Π

→(iv.c)

G | Λ,Λ,Σ⇒ Π

G | Γ,Λ,Σ⇒ Π

G | Λ,∆,Σ⇒ Π

G | Γ,∆,Σ⇒ Π
(wnm)

G | Γ,∆⇒| Λ,Σ⇒ Π

By adding the rule (wnm) and (com) (see Table 4.3) to HFLew, we obtain a sound
and complete calculus for WNM where the cut rule is admissible.

Note that the other axioms depicted in Example 10 are transformed similarly into the
equivalent analytic rules of Table 4.3.

Note that the transformation procedure works for all axioms within the class N2 of
the substructural hierarchy, even when choosing FL (instead of FLew) as base calculus,

41

Γ,Γ,∆⇒ Π
(c)

Γ,∆⇒ Π

G | Γ,∆⇒ Π
(em)

G | Γ⇒| ∆⇒ Π

G | Γ1,Γ2 ⇒
(wem)

G | Γ1 ⇒| Γ2 ⇒

Γ⇒ Π (w)
Γ,∆⇒ Π

G | Γ1,∆2 ⇒ Π2 G | Γ2,∆1 ⇒ Π1
(com)1

G | Γ1,∆1 ⇒ Π1 | Γ2,∆2 ⇒ Π2

Γ⇒ (w′)
Γ⇒ Π

G | Γ1,∆2 ⇒ Π2 G | Γ1,∆3 ⇒ Π3 G | Γ2,∆3 ⇒ Π3
(bc2)

G | ∆3 ⇒ Π3 | Γ2,∆2 ⇒ Π2 | Γ1,∆1 ⇒ Π1

Π,Π1,Π2,Π3 are either one formula or empty
1 The rule generated from the axiom (prel) is actually Avron’s (com)-rule.

Table 4.3: Analytic rules corresponding to the axioms in Example 10

see [53]. The absence of the weakening rule in FL however forces us to consider a proper
subclass of P3 axioms.

In [62], the transformation procedure is introduced for Hilbert axioms in the language
of CFLe (better known as MALL), linear logic without exponentials. As in the case of
FLew, the substructural hierarchy for CFLe is based on the polarity of its logical con-
nectives. The algorithm to transform the axioms into equivalent analytic (hyper)sequent
rules works analogously to the one described above. The advantage of the shift from
the intuitionistic, single-conclusion setting to the classical, multiple-conclusion setting is
that some axioms belonging to higher classes in the former setting are brought down to
lower classes in the latter setting.

In addition to this result, a heuristic principle to generate logical (instead of struc-
tural) rules is introduced in [62]. Note that the generation of logical rules requires some
additional effort for the proofs of soundness, completeness and cut elimination and in
finding the “right” logical rule(s). The heuristic principle works roughly in the following
three steps:

(1) The desired axiom is transformed into a structural or logical rule using the trans-
formation procedure presented before.

(2) If the obtained system is not cut-free, a counterexample ϕ for cut elimination,
which explains the failing proof, needs to be found.

(3) If ϕ ∈ N2 or ϕ ∈ P3, by the transformation procedure, ϕ is turned into a structural
or logical rule and the procedure is started over from step (2).

This way, [62] rediscovered the calculus for Łukasiewicz logic in [129]. Note that the
peculiar axiom of this logic is within N3 (see Example 10).

42

4.3 An Application: Standard Completeness for
Extensions of MTL

We now show how to utilize the analytic calculi introduced by the procedure in [52] for
axiomatic extensions of the Monoidal t-norm based logic MTL [78] to standard com-
pleteness, i.e., completeness of the formalized logics with respect to algebras based on
truth values in the unit real interval [0, 1]; this property makes these logics fuzzy logics
in the sense of [97].

The Logic MTL

Introduced in [78], monoidal t-norm based logic MTL is the logic of left continuous t-
norms6 and their residua. MTL is defined in terms of the Hilbert-style calculus MTLH
as follows [78]:

(Schematic) Axioms

(A1) (ϕ ⊃ ψ) ⊃ ((ψ ⊃ χ) ⊃ (ϕ ⊃ χ))
(A2) (ϕ · ψ) ⊃ ϕ
(A3) (ϕ · ψ) ⊃ (ψ · ϕ)
(A4) (ϕ ∧ ψ) ⊃ ϕ
(A5) (ϕ ∧ ψ) ⊃ (ψ ∧ ϕ)
(A6) (ϕ · (ϕ ⊃ ψ)) ⊃ (ϕ ∧ ψ)
(A7a) (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ · ψ) ⊃ χ))
(A7b) ((ϕ · ψ) ⊃ χ) ⊃ (ϕ ⊃ (ψ ⊃ χ))
(A8) ((ϕ ⊃ ψ) ⊃ χ) ⊃ (((ψ ⊃ ϕ) ⊃ χ) ⊃ χ)
(A9) ⊥ ⊃ ϕ

Inference rules

• modus ponens (MP): for given formulas ϕ and ϕ ⊃ ψ, we obtain ψ;
ϕ ϕ ⊃ ψ

ψ

As mentioned in Section 4.1, an alternative axiomatization of MTL is obtained by
extending FLew with the prelinearity axiom (ϕ ⊃ ψ)∨(ψ ⊃ ϕ). A proof system forMTL
is therefore the (cut-free) hypersequent calculus HMTL, which is obtained by adding to
the hypersequent calculus HFLew Avron’s communication rule (com), see Table 4.4.

We also need the following definitions of algebras and standard completeness (we
refer to [127, 53, 85] for more details).

Definition 21. An MTL-algebra is a structure A = (A,∧,∨, ·,⊃, 0, 1), where

• (A,∧,∨, 0, 1) is a lattice with 0 and 1 as the least and greatest element, respectively.
6A t-norm is a commutative, associative, increasing function ∗ : [0, 1]2 → [0, 1] with identity ele-

ment 1. ∗ is left continuous iff whenever {xn}, {yn} (n ∈ N) are increasing sequences in [0, 1] s.t. their
suprema are x and y, then sup{xn ∗ yn : n ∈ N} = x ∗ y. The residuum of ∗ is a function →∗ where
x→∗ y = max{z | x ∗ z ≤ y}.

43

ϕ⇒ ϕ

G | Γ⇒
G | Γ⇒ Π

(w, r)
G | ϕ,ψ,Γ⇒ Π

G | ϕ · ψ,Γ⇒ Π
(·, l) G | Γ⇒ ϕ G | ∆⇒ ψ

G | Γ,∆⇒ ϕ · ψ
(·, r)

⇒ >
G | Γ⇒ Π

G | Γ, ϕ⇒ Π
(w, l)

G | ϕ,Γ⇒ ψ

G | Γ⇒ ϕ ⊃ ψ
(⊃, r) G | Γ⇒ ϕ G | ψ,∆⇒ Π

G | Γ, ϕ ⊃ ψ,∆⇒ Π
(⊃, l)

⊥ ⇒
G | Γ⇒ Π

G | Γ,> ⇒ Π
(>, l) G | ϕi,Γ⇒ Π

G | ϕ1 ∧ ϕ2,Γ⇒ Π
(∧, l) G | Γ⇒ ϕ G | Γ⇒ ψ

G | Γ⇒ ϕ ∧ ψ
(∧, r)

G | Γ⇒
G | Γ⇒ ⊥

(⊥, r) G | Γ⇒ ϕi

G | Γ⇒ ϕ1 ∨ ϕ2

(∨, r) G | ϕ,Γ⇒ Π G | ψ,Γ⇒ Π

G | ϕ ∨ ψ,Γ⇒ Π
(∨, l)

G

G | Γ⇒ Π
(ew)

G | Γ⇒ Π | Γ⇒ Π

G | Γ⇒ Π
(ec)

G | Γ⇒ ϕ G | ϕ,∆⇒ Π

G | Γ,∆⇒ Π
(cut)

G | Γ1,∆1 ⇒ Π1 G | Γ2,∆2 ⇒ Π2

G | Γ1,Γ2 ⇒ Π1 | ∆1,∆2 ⇒ Π2

(com)

i ∈ {1, 2}, Π,Π1,Π2 are metavariables for multisets containing at most one formula.

Table 4.4: Hypersequent calculus HMTL for MTL

• (A, ·, 1) is a commutative monoid.
• For any x, y, z ∈ A the residuation property holds, i.e., x · z ≤ y iff z ≤ x ⊃ y, with
≤ a binary relation on A defined as x ≤ y iff x = x ∧ y.

• The prelinearity equation holds, i.e., 1 = (x ⊃ y) ∨ (y ⊃ x) for any x, y ∈ A

The MTL-algebra A = (A,∧,∨, ·,⊃, 0, 1) is said to be

• a chain if for every x, y ∈ A, either x ≤ y or y ≤ x .
• dense if, for every x, y ∈ A, whenever x 6≤ y, there is a z ∈ A such that x 6≤ z and
z 6≤ y.

An A-valuation is a homomorphism from formulas to A, i.e., a mapping e from
formulas to A such that e(0) = 0, e(1) = 1 and e(ϕ � ψ) = e(ϕ) � e(ψ), where � ∈
{∧,∨, ·,⊃}.

Definition 22. Let L be an axiomatic extension of MTL with a set Ax of additional
axioms and HL be a suitable proof system for L. An L-algebra AL = (A,∧,∨, ·,⊃, 0, 1)
is an MTL-algebra which satisfies 1 = e(ϕ), for every ϕ ∈ Ax and every A-valuation e.
We say that L is standard complete if, for every set of formulas Γ ∪ ϕ, the following are
equivalent:

• Γ `HL ϕ
• For every L-algebra over the real interval [0, 1], AL = ([0, 1],∧,∨, ·,⊃, 0, 1) and
AL-valuation e, if e(ψ) = 1 for every ψ ∈ Γ, then e(ϕ) = 1.

44

Traditionally, the proof that a logic is standard complete uses semantic techniques
which are inherently logic-specific, e.g., [102, 50, 99]. Given a logic L described in a
Hilbert-style system, such semantic proofs usually consist of the following four steps
(see, e.g., [78, 97, 102, 50, 130, 77]):

1. The algebraic semantics of the logic is identified (L-algebras).
2. It is shown that if a formula is not valid in an L-algebra, then it is not valid in a

countable L-chain (linearly ordered L-algebra).
3. It is shown that any countable L-chain can be embedded into a countable dense

L-chain by adding countably many new elements to the algebra and extending
the operations appropriately. This establishes rational completeness: a formula is
derivable in L iff it is valid in all dense L-chains.

4. Finally, a countable dense L-chain is embedded into a standard L-algebra, that is an
L-algebra with lattice reduct [0, 1], using a Dedekind-MacNeille-style completion.

Note that the most difficult step is to establish rational completeness (step 3), as it
relies on finding the right embedding, if there is one. A different approach to step 3 using
proof-theoretic techniques was proposed in [127]: the idea is that the admissibility of the
so-called density rule in a logic L can lead to a proof of rational completeness for L; for
instance, this is the case when L is any axiomatic extension of MTL. The density rule,
which is syntactically similar to the cut rule, was introduced by Takeuti and Titani in
their axiomatization of first-order Gödel logic [161]. In hypersequent calculi (an instance
of) this rule has the form:

G′ | Σ, p⇒ Π | Λ⇒ p

G′ | Σ,Λ⇒ Π
(D)

where p is a propositional variable not occurring in Σ,Λ,Π or G′, i.e. p is an eigen-
variable. Adding the density rule to a hypersequent calculus can have a dramatic effect.
Consider e.g. HMTL + (em) from Table 4.3. By adding the density rule (D) we are able
to prove the empty sequent as follows:

(init)p⇒ p
(em)

p⇒|⇒ p
(D)⇒

A similar situation arises for HMTL + (bc2) + (c). This is not really a surprise
because the addition and subsequent elimination of (D) from an extension of HMTL
leads to rational completeness for the formalized logic, as shown in [127]. However, the
two calculi mentioned above formalize logics that are not rational complete: they are
classical logic, and 3-valued Gödel logic. On the other hand, for many extensions of
HMTL, adding (D) has no effect on the derivable hypersequents: applications of (D) can
be eliminated from derivations.

Following the approach in [127], to establish standard completeness for a logic L we
need to

45

(a) define a suitable proof system HL for L extended with the density rule
(b) check that this rule can be eliminated (or is admissible) in HL, i.e. that density

does not enlarge the set of provable formulas. Density elimination implies rational
completeness for the formalized logic [127].

(c) prove standard completeness in many cases (but not in general) by means of the
Dedekind-MacNeille completion, which is ensured by the results in [53].

We use these three steps to automate standard completeness proofs for large classes
of axiomatic extensions of MTL. This is achieved by identifying sufficient conditions
on hypersequent rules that ensure density elimination (and, by [127], rational complete-
ness) for the formalized logics. We call the rules meeting these conditions “convergent
rules”. Moreover, the tool AxiomCalc (Section 4.3.1) automates steps (a)-(c) above for
propositional logics extending MTL by any Hilbert axiom within the class P3 in the
substructural hierarchy.

Step (a): Automated Proof Theory for Extensions of MTL

By applying the algorithm of [52] that we described previously, we can find a proof system
HL for any logic defined by extending MTL with Hilbert axioms within the class P3 of
the substructural hierarchy.

Example 12. Let WNMn be the logic defined by adding to MTL the axiom ¬(ϕ ·ψ)n∨
((ϕ∧ψ)n−1 ⊃ (ϕ ·ψ)n) for any n ≥ 2, where (ϕ�ψ)n stands for (ϕ�ψ)� · · · � (ϕ�ψ), � ∈
{∧,∨,⊃, ·} n times. The equivalent analytic rule obtained by the algorithm in Section 4.2
is

{G | (Γi,Γj)
n,Σ⇒ Π}1≤i,j≤(n−1)

{G | (Γi,Γn+2j−1)n,Σ⇒ Π}1≤i≤(n−1);1≤j≤n
{G | (Γn+2i−2,Γj)

n,Σ⇒ Π}1≤i≤n;1≤j≤(n−1)
{G | (Γn+2i−2,Γn+2j−1)n,Σ⇒ Π}1≤i,j≤n

(wnm)n
G | Γn, · · · ,Γ(3n−1) ⇒ | Γ1, · · · ,Γn−1,Σ⇒ Π

Let HWNMn be the hypersequent calculus for WNMn obtained by extending HMTL
with the rule above. For instance, HWNM2 is the calculus obtained by extending HMTL
with the rule

{G | Γ2
1,Γ

2
i ,Σ⇒ Π}1≤i≤5 {G | Γ2

i ,Γ
2
i+1,Σ⇒ Π}2≤i≤4 {G | Γ2

2,Γ
2
5,Σ⇒ Π}

(wnm)2

G | Γ2,Γ3,Γ4,Γ5 ⇒| Γ1,Σ⇒ Π

which is equivalent to the axiom ¬(ϕ · ψ · ϕ · ψ) ∨ ((ϕ ∧ ψ) ⊃ (ϕ · ψ · ϕ · ψ)).

In the next step we identify a property that, when satisfied by the hypersequent rules
generated using the algorithm in [52], ensures density elimination of the corresponding
extensions of HMTL. Rules satisfying this property are called convergent.

46

Step (b): Sufficient Condition for Density Elimination

Given a sequent S henceforth we will denote by L(S) its left hand side (the antecedent)
and by R(S) its right hand side (the succedent). Let S := Γ1,Γ2 ⇒ Π, we indicate by
S[Γ1/Λ]l[Π/Σ⇒Ψ]r the sequent Λ,Γ2,Σ⇒ Ψ. The notations apply also to metasequents,
i.e., sequents built from metavariables.

In what follows we will refer to any hypersequent rule generated by the procedure
in [52] as completed.

Definition 23. Let r be a completed hypersequent rule of the form

G | S1 . . . G | Sm
G | C1 | . . . | Cq

and let G | Si and G | Sj be among its premises.

(0) G | Si is a 0-pivot if there is an s ∈ {1, . . . , q} such that R(Si) = R(Cs) and the
different metavariables in L(Si) are contained in those of L(Cs).

(n) G | Sj is an n-pivot for G | Si, for n > 0, if the following conditions hold:

– G | Sj is a 0-pivot
– R(Si) = R(Sj)

– L(Sj) = L(Si[
Γ1/∆1

, . . .Γn /∆n
]l) for Γ1, . . .Γn ∈ L(Si) and ∆1, . . .∆n ∈ L(Sj)

– If n > 1, G | Sj is a (n-1)-pivot for n premises G | Sj1 . . . G | Sjn , and
L(Sj) = L(Sji [

Γ1/∆1
, . . . ,Γi−1 /∆i−1

,Γi+1 /∆i+1
, . . . ,Γn /∆n

]l)

for Γ1, . . . ,Γi−1,Γi+1, . . . ,Γn ∈ L(Sji), ∆1, . . . ,∆i−1,∆i+1, . . . ,∆n ∈ L(Sj)
and i = 1, . . . , n.

Example 13. Recall the rule (wnm)2 from Example 12:

{G | Γ2
1,Γ

2
i ,Σ⇒ Π}1≤i≤5 {G | Γ2

i ,Γ
2
i+1,Σ⇒ Π}2≤i≤4 {G | Γ2

2,Γ
2
5,Σ⇒ Π}

(wnm)2

G | Γ2,Γ3,Γ4,Γ5 ⇒| Γ1,Σ⇒ Π

• All different metavariables in the premise P1 = G | Γ2
1,Γ

2
1,Σ⇒ Π are contained in

the component Γ1,Σ ⇒ Π of the conclusion of the rule (wnm)2. Therefore, P1 is
a 0-pivot.

• The premise P1 is a 1-pivot for all premises G | Γ
2
1,Γ

2
i ,Σ ⇒ Π, 2 ≤ i ≤ 5 as they

differ from P1 only by one metavariable.
• P1 is a 2-pivot for the remaining premises of (wnm)2.

Definition 24. A completed hypersequent rule r is convergent if for each premise G | Si
one of the following conditions holds:

(1) R(Si) = ∅,
(2) G | Si is a 0-pivot, or
(3) there is a premise G | Sj which is an n-pivot for G | Si, with n > 0.

47

Intuitively, the conclusion of a convergent rule results from a “minimal interplay”
among its premises. Indeed for a premise G | Si, in which R(Si) is not empty, two cases
can arise: either the metavariables contained in it are already present in a component of
the rule’s conclusion, or there is a premise G | Sj having this property that allows us to
obtain G | Si by suitable replacements of the metavariables.

Example 14. All internal structural rules, e.g. (c), (w), (w′), and (wem) from Table 4.3,
(wnm) from Example 11 and (wnm)n from Example 12 are convergent. The completed
rules (em) and (bc2), see Table 4.3, are not convergent.

Note that the tool AxiomCalc (see Section 4.3.1) does not only implement the trans-
formation procedure from Hilbert axioms to equivalent structural (hyper)sequent rules,
but also performs the check for convergent rules automatically.

Below we sketch that HMTL extended with any set of convergent rules admits den-
sity elimination (the formal proofs can be found in Appendix A). Density elimination
was proved in [24, 127] for various calculi, including HMTL. These proofs are calculi-
specific and use heavy combinatorial arguments, in close analogy with Gentzen-style
cut elimination proofs. A different method to eliminate applications of the density rule
from derivations was introduced in [58] and is called density elimination by substitution.
We use and refine this method for extensions of HMTL with large classes of external
hypersequent rules.

The method in [58] works roughly as follows: Let d be a subderivation ending in the
following uppermost application of density

...d′

G′ | Σ, p⇒ Π | Λ⇒ p
(D)

G′ | Σ,Λ⇒ Π

(D) is removed by substituting the occurrences of p in d in an “asymmetric” way,
according to whether p occurs in the left or in the right hand side of a sequent. More
precisely, each component S of a hypersequent in d is replaced by S[p/Λ]l[p/Σ⇒Π]r. This
way, the application of (D) above is simply replaced by (ec).

However, the resulting labelled tree, denoted by d∗, might not be a correct derivation
anymore. The reason for that is that there might be external structural rules in d,
different from (ew) and (ec), that mix the content of various conclusion components.
This might lead to p-axioms in their premises, i.e. to hypersequents of the form

G | Θ, pk ⇒ p

Such p-axioms are derivable from axioms simply by using weakenings; the problem is that
the asymmetric substitution on a p-axiom leads to a sequent that is no longer derivable
in the same way, e.g., G | Θ,Λk,Σ⇒ Π.

The proof for density elimination in [58] was done for calculi containing only (ec),
(ew) and (com) as external structural rules. Then the only problematic case was when

48

in d one of the premises of (com) led to a p-axiom, which was handled by discarding
in d∗ this application of (com) and replacing it with a suitable (sub)derivation starting
from the other premise.

We show below that the addition of a convergent rule r behaves well with respect to
these asymmetric substitutions, even though r can manipulate more components at once
(and, hence, might lead to a p-axiom). Indeed, assume that one or more premises of r
lead to a p-axiom in d, e.g. G | Θ, pk ⇒ p. Then the x-pivot premises of r can be used
to derive the substituted version G | Θ,Λk,Σ⇒ Π, allowing to correctly apply r.

A (D)-free derivation is a derivation not containing the (D)-rule. The following
lemma, which allows us to suitably “move” multisets of formulas between components,
is the key for our main proof of the theorem of density elimination. Both proofs can be
found in the Appendix A.

Lemma 3. Let R be any set of convergent rules extending the calculus HMTL and let
H be the calculus defined by HMTL+R.

1. Any derivation d of H can be transformed into a derivation of H[p/α]l[p/⇒α]r, for
any formula α and propositional variable p.

2. Let d′ and d1 be derivations of G′ | Σ, p ⇒ Π | Λ ⇒ p (where p /∈ G′,Σ,Π,Λ) and
G′ | Θ,∆⇒ Ψ. We can find a derivation of G′ | Θ,Λ⇒ Ψ | Σ,∆⇒ Π.

Theorem 4 (Density Elimination). HMTL extended with any set R of convergent rules
admits density elimination, i.e., there is a procedure which transforms every derivation
of HMTL+R into a (D)-free derivation of HMTL+R with the same end sequent.

Step (c): From Density Elimination to Standard Completeness

Theorem 4 together with the results in [127, 53] lead to standard completeness for any
logic L extending MTL with any set Ax of axioms having equivalent convergent rules.
We refer to [127, 53, 85] for more detail on concepts of universal algebra.

As shown in [127], density elimination is indeed a uniform method to establish rational
completeness for any extension of MTL. From Theorem 4 we can therefore state the
following: let AL be an MTL-algebra (see [78] and steps 1-4 at the beginning of this
section) satisfying the equations EAx corresponding to axioms in Ax. Then for every
formula ϕ we have:

ϕ is satisfied in each dense AL-chain ⇔ ϕ is derivable in MTL+Ax.

Standard completeness is then achieved through Dedekind-MacNeille completion. It is
shown, e.g. in [127], that the Dedekind-MacNeille completion of a dense MTL-chain
is still a dense MTL-chain — in other words, the property of being a dense MTL-
chain is preserved by the Dedekind-MacNeille-completion. The results in [53] on the
preservation of equations by this completion hold for the equations EAx when restricting
to MTL-chains. Hence the Dedekind-MacNeille completion of a dense AL-chain is still a
dense AL-chain, and, in addition, it is order-isomorphic to [0, 1]. This leads to standard
completeness for the logic L.

49

Corollary 2. Let L be a logic extending MTL with a set of axioms Ax such that every
axiom ϕ ∈ Ax corresponds to a set of convergent rules by the algorithm of Theorem 3.
Then L is standard complete.

Example 15. From our results (Corollary 2) it follows that the family of logics obtained
by extending MTL with the axioms ¬(ϕ ·ψ)n∨((ϕ∧ψ)n−1 ⊃ (ϕ ·ψ)n) for any n ≥ 2 from
Example 12 are standard complete and hence they are fuzzy logics in the sense of [97].
This new family of logics contains infinitely many different logics. This can be easily seen
by noticing that the axiom above for any n is valid in the m-valued logic of Łukasiewicz
if and only if m ≤ n+ 1.

Note that our results allows us to prove standard completeness for (infinitely) many
logics and also allows for the automated discovery of new fuzzy logics.

4.3.1 Tool: AxiomCalc

The TINC-tool AxiomCalc implements the systematic procedure introduced in [52] (and
recalled in Section 4.2) and the check for the sufficient conditions for standard complete-
ness presented in Section 4.3. AxiomCalc takes as input a Hilbert axiom specified in the
language of Full Lambek calculus with exchange and weakening FLew and, if possible,
transforms it into equivalent analytic sequent or hypersequent rules. If required by the
user, the tool also checks whether the logic obtained by extending monoidal t-norm logic
MTL [78] with this axiom is a fuzzy logic in the sense of [97] (i.e., whether the resulting
rule is convergent).

For example, AxiomCalc can be used to construct analytic calculi for Gödel logic [91],
the logics of Kripke models with k worlds Bck [49] or the logics of Kripke models with
width ≤ k Bwk [49]. Moreover, it was used to introduce an analytic calculus for the
standard complete weak nilpotent minimum logic WNM [78]. By experimenting with
the tool, we discovered the new family of fuzzy logics defined by extending MTL with
the axioms ¬(ϕ · ψ)n ∨ ((ϕ ∧ ψ)n−1 ⊃ (ϕ · ψ)n) for n ≥ 2, see Section 4.3.

AxiomCalc is available at

http://www.logic.at/tinc/webaxiomcalc/

Example

The main screen of the tool AxiomCalc is depicted in Figure 4.2. The user can enter in
the text field an axiom according to the syntax (see below). Moreover, he can check if the
resulting logic is a fuzzy logic by ticking the checkbox “Check for Standard Completeness”.

After the computation, a dialog box containing the results pops up, see Figure 4.3. It
contains the class of the axiom in the substructural hierarchy, the computed rule in text
format, as well as a link to the generated paper containing the obtained calculus along
with a basic description of the system.

When the program is started via the command-line, the user simply types compute
(for the check of standard completeness: computesc) and enters the axiom. While the

50

http://www.logic.at/tinc/webaxiomcalc/

Figure 4.2: Main screen of AxiomCalc

Figure 4.3: Dialog box containing the results

class of the axiom in the substructural hierarchy and the corresponding rule is printed
on the screen, the LATEX-file is saved in a program folder on the computer. Note that
in the text representation of the rule, G+i and D+i (P+i, resp.) for any i ≥ 1 stands for
multisets of formulas Γi and ∆i (or Πi which contains at most one formula, resp.) and
G stands for a side hypersequent. Below we show the output generated for the formula
¬(ϕ · ψ) ∨ (ϕ ∧ ψ ⊃ ϕ · ψ):

?- compute.
|: -(a*b) v (a&b -> a*b).

This axiom is in the class: p(3)

51

Equivalent Analytic Rule:

G|G+1,G+1,D+1 => P+1 G|G+2,G+1,D+1 => P+1
G|G+2,G+3,D+1 => P+1 G|G+1,G+3,D+1 => P+1

G| G+2,G+3 => | G+1,D+1 => P+1

Implementation Details

AxiomCalc is implemented in Prolog. The implementation consists of 11 files and roughly
1700 lines of code (including documentation). The implementation of AxiomCalc follows
the general TINC-structure described in Chapter 3 (recall Figure 3.5). The specific
instantiation for AxiomCalc is depicted in Figure 4.4.

Figure 4.4: Design of AxiomCalc

Input and checkInput. The input formula is provided as a parameter to the first
component, checkInput, which ensures that the axiom has the correct form to be
handled by the algorithm. The syntax of the input formula is as follows:

• the letters [a-z] except v for (atomic) formulas
• bot and top for logical constants
• logical connectives: & (additive and), * (fusion/multiplicative and), v (or), -> (im-

plication) and - (negation).

The component checkInput implements a syntactic check of the input formula using a
definite clause grammar:

Code Example 1. We use axiom2tex as start symbol of the DCG. On the right side of
the arrow we can see the translation into LATEX code. In the following code snippet, we
only show the definition of the start symbol and omit the definition of the other nonter-
minal symbols (axiom2texP1, axiom2texP2, . . ., axiom2texP5 and bs, which stands for

52

the ASCII code of the backslash \).

axiom2tex(-X) --> " ", bs, "lnot ", axiom2texP1(X).
axiom2tex(X & Y) --> axiom2texP2(X), " ", bs, "land ", axiom2texP2(Y).
axiom2tex(X v Y) --> axiom2texP3(X), " ", bs, "lor ", axiom2texP3(Y).
axiom2tex(X * Y) --> axiom2texP4(X), " ", bs, "cdot ", axiom2texP4(Y).
axiom2tex(X -> Y) --> axiom2texP5(X), " ", bs, "ra ", axiom2texP5(Y).
axiom2tex(top) --> bs,"top".
axiom2tex(bot) --> bs,"bot".
axiom2tex(a) --> bs,"alpha".
axiom2tex(b) --> bs,"beta".
...

computeRules and exploit. The second component, computeRules, contains
the implementation of the algorithm:

• isInClass identifies the class of the input axiom within the substructural hierarchy
and indicates it as n(i) for Ni or p(i) for Pi.
• If the class of the axiom identified before is within P3, axiom2rule transforms the

axiom into equivalent analytic (hyper)sequent rules.

The third component exploit is optional and will only be called when requested by
the user. It contains the goal isConvergent that checks if the new rule is a convergent
rule according to Definition 24.

Code Example 2. Below we show the implementation of isConvergent. We check

(1) is_empty_RHS: if the right hand side is empty,
(2) else is_pivot0: if the sequent is a 0-pivot, and
(3) else is_npivot_check: if there exists another premise which is an n-pivot for the

sequent.

%% isConvergent(+[Prem,Con], -Convergent, -[PremR,ConvR])
%% + ... parameter given as input, - ... return value
%% [Prem,Con] ... premises and conclusion of the analytic rule
%% that has to be checked if it is convergent
%% Convergent ... 1 if premises are convergent, 0 otherwise
%% [PremR,ConR]... resulting premises and conclusion

isConvergent([Premises,Con], Convergent, [PremisesR,ConvR]) :-
remove_double(Premises, [], Prem),

53

is_empty_RHS(Prem, ConvPrem), % check condition (1)
length(ConvPrem, LConvPrem),
length(Prem, LPrem),
((LPrem = LConvPrem) ->

Convergent = 1,
PremisesR = [],
ConvR = []

; % else: check condition (2)
is_pivot0(Prem, Con, ConvPrem, ConvPrem1),
length(ConvPrem1, LConvPrem1),
((LPrem = LConvPrem1) ->

Convergent = 1,
PremisesR = [],
ConvR = [[0, ConvPrem1]]

; ((LConvPrem1 = LConvPrem) ->
Convergent = 0,
PremisesR = Prem,
ConvR = []

; %else: check condition (3)
is_npivot_check(Prem, ConvPrem1, Check, CountP),
((Check = 0) ->

Convergent = 0,
PremisesR = Prem,
ConvR = []

; % differentiate between 0-pivot, 1-pivot, ... premises
ConvPrem2 = [[0, ConvPrem1]],
recursive_pivotn(Prem, ConvPrem2, ConvPrem3, CountP, 1),
is_convergent_length(ConvPrem3, LConvPrem3),
((LPrem = LConvPrem3) ->

Convergent = 1
; Convergent = 0

),
PremisesR = Prem,
ConvR = ConvPrem3

)))).

Output and printOutput. The last component, printOutput, contains the method
to print the generated rule on the command-line or web interface (printRules); moreover,
the method texOut generates a LATEX-paper containing the resulting analytic (hyper-
)sequent calculus and, if requested, the results of the check for standard completeness.

The method texOut is used for the generation of the LATEX-paper. It takes as ar-
guments the input formula and the computed rules and rewrites them into LATEX-code

54

by using the DCG that we already used in the checkInput-component. The (LATEX
version of the) axioms and rules are written to a style file, which is included in the main
tex file. However, the LATEX code of the axioms and rules is not the only thing that needs
to be “written” by the tool: according to the results, also the contents of the final tex
file need to be adjusted. For example, in AxiomCalc, the base calculus could be either a
sequent or a hypersequent calculus, according to the input axiom.

Code Example 3. We show below how the texOut goal is implemented in AxiomCalc
for axioms that are transformed into hypersequent rules.

%% texOut(+Axiom, +Rules, +C)
%% + ... parameter given as input, - ... return value
%% Axiom ... Axiom the user provided
%% Rules ... Analytic rules for Axiom
%% C ... Class of the Axiom
texOut(Axiom, Rules, C) :-

member(C, [p(2),p(3)], % C is either p(2) or p(3)
axiom2tex(Axiom,TAxiom,[]), % use the DCG to rewrite the Axiom
tell(’tex/AxiomCalc.sty’), % open the .sty file
length(Rules, N), % number of rules
% retrieve content according to the number of rules:
constants2tex("HFLew", N, C),
print_phrase(texNewAxiom(TAxiom)), % write to .sty file
print_phrase(texNewAxiomNotMath(TAxiom)), % write to .sty file:
nl, print_phrase(texNewRuleStart), % write to .sty file:
createHSeqRules(Rules), % create LaTeX code for hypersequent rules
print_phrase(texNewRuleEnd), %write to .sty file
told. %close .sty file

55

CHAPTER 5
Intermediate Logics

Intermediate logics lie between intuitionistic and classical logic. They can be described
in two different ways by using syntactic or semantic methods. Syntactically, they are
axiomatic extensions of (propositional) intuitionistic logic Int. Semantically, they are
defined by imposing additional conditions to the accessibility relation 6 of the standard
intuitionistic Kripke frame [49]. Intermediate logics are closely connected to modal logics,
from a technical and a philosophical viewpoint [49]. Moreover, some intermediate logics
have found applications in computer science, e.g. in non-monotonic reasoning and logic
programming [146, 143], and some others are among the most important formalizations
of fuzzy logic [97].

In this chapter, we present two approaches for the introduction of analytic calculi for
intermediate logics. The two approaches are distinguished by their starting point. The
first combines an automated procedure with a heuristic method and is based on the syn-
tactic definition of the logic. As an example, we apply this method to the Hilbert system
for the logic Bd2, i.e. the logic of frames with bounded depth of at most 2 [49]. This
way, we give a first analytic hypersequent calculus for this logic. The second approach
is a systematic procedure that is based on the semantic specification of the considered
logic. It generalizes the method in [76]. Finally, we present the TINC-tool Framinator
that implements the latter approach for a large class of intermediate logics.

We start by settling the basic notions and give some examples of (propositional) in-
termediate logics. In Section 5.2, we give an overview of related work on the (automated)
introduction of analytic calculi for intermediate logics. The following two sections con-
tain our theoretical contributions: In Section 5.3, we introduce a (heuristic) method to
create logical hypersequent rules out of Hilbert axioms. Section 5.4 contains the system-
atic procedure to transform frame conditions defining intermediate logics into labelled
rules, hence obtaining cut-free labelled sequent calculi for a large class of intermediate
logics. Section 5.4.1 contains a description of the tool Framinator that implements the
systematic procedure to generate labelled calculi.

The results of this chapter are based on [57].

57

5.1 Preliminaries

The language of propositional intermediate logics is the language Lint of Section 2.1.

An intuitionistic frame is a pair F = 〈W,6〉 where W is a non-empty set (the set of
possible worlds), and 6⊆ W ×W is a reflexive and transitive (accessibility) relation on
W . An intuitionistic model is a triple M = 〈W,6,〉, where is a binary relation (called
forcing) between elements of W , the possible worlds, and atomic formulas. Intuitively,
x p means that the atom p is true (holds) at world x. Forcing is assumed to be
monotonic w.r.t. the relation 6, namely, if x 6 y and x p then also y p. The forcing
relation is defined inductively on arbitrary formulas as follows:

(⊥) x ⊥ for no x
(∧) x ϕ ∧ ψ iff x ϕ and x ψ
(∨) x ϕ ∨ ψ iff x ϕ or x ψ
(⊃) x ϕ ⊃ ψ iff x 6 y and y ϕ implies y ψ.

Frame conditions are imposed on the relation 6 on intuitionistic Kripke frames to
define intermediate logics semantically. They are usually expressed as formulas in the
language of first-order classical logic: Atomic formulas are relational atoms of the form
x 6 y, denoted by (possibly indexed) P,Q. Compound formulas A,B,C,M, . . . are built
from relational atoms using the propositional connectives & (conjunction), ∨ (disjunc-
tion), → (implication), ¬ (negation), and the quantifiers ∀ (universal quantifier) and
∃ (existential quantifier). Variables are interpreted as elements of W and the binary
predicate 6 denotes the accessibility relation of F.

We use Q[x/y] (Γ[x/y]) to denote Q (Γ) after substituting the variable x for the
variable y.

Labelled Sequent Calculus

The labelled sequent calculus [83, 167, 134] is a semantic formalism generalizing Gentzen’s
sequent calculus. In a labelled sequent calculus, the logic semantics is made explicit part
of the syntax. Each formula ϕ receives a label x, written as x : ϕ. The labels are
interpreted as possible worlds, and a labelled formula x : ϕ intuitively means that ϕ
holds in world x, i.e. x ϕ. Moreover, labels may occur also in expressions for the
accessibility relation (relational atoms) like, e.g., x 6 y.

Definition 25. A labelled sequent is a sequent consisting of labelled formulas and rela-
tional atoms.

As in the case of sequent and hypersequent calculus, the rules of a labelled sequent
calculus consist of initial axioms, logical rules and structural rules. Moreover, there are
also rules that correspond to the peculiar frame conditions of the considered logics; as an
example, see the rules (ref) and (trans) in Table 5.1 for relational atoms corresponding
to the assumptions of reflexivity and transitivity of the accessibility relation 6.

58

x 6 y, x : p,Γ⇒ ∆, y : p

x : ϕ, x : ψ,Γ⇒ ∆

x : ϕ ∧ ψ,Γ⇒ ∆
(∧, l) Γ⇒ ∆, x : ϕ Γ⇒ ∆, x : ψ

Γ⇒ ∆, x : ϕ ∧ ψ (∧, r)

x : ⊥,Γ⇒ ∆
(⊥, l) Γ⇒ ∆, x : ϕ, x : ψ

Γ⇒ ∆, x : ϕ ∨ ψ (∨, r) x : ϕ,Γ⇒ ∆ x : ψ,Γ⇒ ∆

x : ϕ ∨ ψ,Γ⇒ ∆
(∨, l)

x 6 x,Γ⇒ ∆

Γ⇒ ∆
(ref)

x 6 y, y : ϕ,Γ⇒ ∆, y : ψ

Γ⇒ ∆, x : ϕ ⊃ ψ (⊃, r) x 6 z, x 6 y, y 6 z,Γ⇒ ∆

x 6 y, y 6 z,Γ⇒ ∆
(trans)

x 6 y, x : ϕ ⊃ ψ,Γ⇒ ∆, y : ϕ x 6 y, x : ϕ ⊃ ψ, y : ψ,Γ⇒ ∆

x 6 y, x : ϕ ⊃ ψ,Γ⇒ ∆
(⊃, l)

y in the conclusion of (⊃, r) is an eigenvariable

Table 5.1: Labelled calculus G3I [76]

Table 5.1 depicts the labelled sequent calculus G3I for Int. Note that its logical rules
are obtained directly from the inductive definition of forcing and that the rule (⊃, r) must
satisfy the eigenvariable condition (y does not occur in the conclusion).

Definition 26. Let CL be a labelled sequent calculus and R be a set of rules. We
write CL +R to denote the labelled sequent calculus CL extended with R. A derivation
in a labelled sequent calculus is a labelled finite tree with a single root (called end se-
quent), axioms at the top nodes, and where each node is connected with the (immediate)
successor nodes (if any) according to the inference rules.

For labelled sequents derived in CL +R we write

`CL+R Γ⇒ ∆

The notation `CL+R ϕ is defined as `CL+R⇒ ϕ, i.e., derivability of the labelled sequent
Γ ⇒ ϕ with Γ being empty. If a labelled sequent S0 is derivable from a set of labelled
sequents S in CL +R, we write

S `CL+R S0

The notions of height of a derivation and complexity of a formula are as for the sequent
calculus. Moreover, we also need the equivalence of rules:

Definition 27. Two labelled rules r and r′ are equivalent (in G3I) if the derivability
relations `G3I+r and `G3I+r′ coincide, i.e., when the conclusion of r is derivable from its
premises in G3I + r′ (and the conclusion of r′ is derivable from its premises in G3I + r),
then r and r′ are equivalent. The definition naturally extends to sets of rules.

Finally, we introduce the notions of height-preserving admissibility and height-preserving
invertibility :

59

Name Axiom
em ¬ϕ ∨ ϕ
wem ¬ϕ ∨ ¬¬ϕ
prel (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ)

bwn
∨n
i=0(ϕi ⊃

∨
j 6=i ϕj)

bdn bd1 = ϕ1 ∨ (ϕ1 ⊃ ϕ0), and
bdn = ϕn ∨ (ϕn ⊃ bdn−1)

bd2 ϕ2 ∨ (ϕ2 ⊃ ϕ1 ∨ (ϕ1 ⊃ ϕ0))

bcn ϕ0 ∨ (ϕ0 ⊃ ϕ1) ∨ . . . ∨ (ϕ0 ∧ . . . ∧ ϕn−1 ⊃ ϕn)

gs (ϕ ⊃ ψ) ∨ (ψ ⊃ ϕ) ∨ ((ϕ ⊃ ¬ψ) ∧ (¬ψ ⊃ ϕ))

sm (¬ψ ⊃ ϕ) ⊃ (((ϕ ⊃ ψ) ⊃ ϕ) ⊃ ϕ)

kp (¬ϕ ⊃ (ψ ∨ χ)) ⊃ ((¬ϕ ⊃ ψ) ∨ (¬ϕ ⊃ χ))

Table 5.2: (Schematic) Hilbert axioms defining intermediate logics

Definition 28. Whenever derivability of the premises of a rule implies derivability of its
conclusion with at most the same derivation height, the rule is called height-preserving
admissible (abbreviated hp-admissible).

Let S1, . . . , Sn, S be labelled sequents and r a labelled sequent rule of G3I . r is
height-preserving invertible (abbreviated hp-invertible) if for each instance

S1 · · · Sn
S

of r, whenever `G3I S, then `G3I Si for i = 1, . . . , n with at most the same derivation
height.

Examples of Intermediate Logics

(Propositional) Intermediate logics lie between (propositional) intuitionistic logic Int and
(propositional) classical logicCl. The latter is considered to be the strongest intermediate
logic in which the accessibility relation 6 is an equivalence relation.

Below we describe some intermediate logics and present their syntactic (Hilbert ax-
ioms) and semantic (frame conditions) definitions.

Logic Axiomatiza-
tion∗

Semantic Characterization

Cl Classical logic Int+ em ∀x, y(x 6 y → y 6 x)

LQ Jankov (or De Morgan)
logic [100] is the logic of
strongly directed frames.

Int+ wem ∀x, y, z((x 6 y&x 6 z) →
∃w(y 6 w&z 6 w))

60

GD Gödel-Dummett logic [91, 71]
is the logic of linear order and
one of the main fuzzy logics.

Int+prel ∀x, y, z((x 6 y&x 6 z) → (y 6
z ∨ z 6 y))

Bcn are the logics of frames with
cardinality at most n for n ≥
1 [49].

Int+bcn ∀x0, x1, . . . , xn(&n
i=1(x0 6

xi)→
∨
i 6=j(xi 6 xj&xj 6 xi))

Gn (n + 1)-valued Gödel log-
ics [91] are the logics of linear
frames with at most n nodes.

Int+prel+ bcn frame conditions of GD and
Bcn

Bwn are the logics of frames with
bounded width of at most n
for n ≥ 1 [49]. Bw1 coincides
with GD.

Int+bwn ∀x, x0, . . . , xn(&n
i=0(x 6 xi) →∨

i 6=j(xi 6 xj&xj 6 xi))

Bdn are the logics of frames with
bounded depth of at most n
for n ≥ 1 [49].

Int+ bdn ∀x0, . . . , xn(&n−1
i=0 (xi 6 xi+1) →∨

i 6=j(xi 6 xj&xj 6 xi))

Bd2 is the logic of frames with
bounded depth at most 2.

Int+bd2 ∀x, y, z((x 6 y&y 6 z) → (y 6
x ∨ z 6 y))

GS is the greatest semi-
constructive logic (also
called Bd2F2) [79].

Int+bd2 + gs frame condition of Bd2 and
∀x, y, z∃v((x 6 v&y 6 v) ∨ (y 6
v&z 6 v) ∨ (x 6 v&z 6 v))

SM Smetanich logic [49] is the
greatest intermediate logic
that is properly included in
Cl. It is also known as 3-
valued Gödel logic.

Int+sm
Int+prel+ bd2

frame conditions of GD and
Bd2

KP Kreisel-Putnam logic [111] Int+kp ∀x, y, z((x 6 y&x 6 z) → (y 6
z∨z 6 y∨∃u(x 6 u&u 6 y&u 6
z&F (u, y, z))))
where F (u, y, z) = ∀v(u 6 v →
∃w(v 6 w&(y 6 w ∨ z 6 w))).

∗ The Hilbert axioms are given in Table 5.2 on page 60.

The intermediate logics Int, Cl, LQ, GD, Bd2, GS and SM are the only seven
interpolable propositional intermediate logics [123] and were among the first intermediate
logics to be introduced in the literature.

61

5.2 Related Work in Proof Theory

We give a brief overview of related work on the systematic introduction of analytic calculi
for intermediate logics. We distinguish between syntactic and semantic approaches.

Syntactic Calculi

A formalism that has frequently been used to define calculi for intermediate logics is the
tableau calculus, see [157, 80]. Tableau calculi can be easily obtained by dualizing sequent
calculi. In [8] (duplication-free) tableau calculi and their related cut-free sequent calculi
are defined for all the interpolable intermediate logics. As the introduction of these calculi
was tailored to the specific logic at hand, a more systematic approach was presented
in [51]. There, for the logics Bwn, Bcn, Gn and LQ, the conditions characterizing these
logics were translated into rules for hypertableaux, which are a natural generalization
of tableaux, analogous to how hypersequents are a natural generalization of sequents.
However, similar to the case of hypersequents, the same procedure cannot be applied to
all intermediate logics, e.g. to Bd2. For the particular case of the logic Bdn, a path-
hypertableau calculus was introduced, which is a hypertableau calculus where the order
of the components matters. The path-hypertableau calculus for Bdn is then defined by
adding to the path-hypertableau calculus for Int a structural rule corresponding to the
axiom characterizing Bdn.

As already mentioned in Section 4.2, the procedure in [52] was a first step in the direc-
tion of automated procedures for large classes of various non-classical logics. The results
in [52] also include many intermediate logics, e.g. the logics LQ, GD, Bwn or Bcn. The
Hilbert axioms characterizing these logics are all within the class P3 of the substructural
hierarchy and can thus be transformed into equivalent analytic hypersequent rules.

The systematic procedure from [52] has been adapted to display calculi in [59], trans-
forming axioms into equivalent structural display rules. Note that hypersequent calculi
can be translated into display calculi [152] and hence the results on display calculus sub-
sume those for the hypersequent calculus. Moreover, the procedure proposed in [59] can
also be applied to axioms that cannot be captured using the procedure in [52], e.g., the
axioms defining the logic Bdn for n ≥ 2.

Semantic Calculi

A modular approach to define cut-free labelled calculi, which in particular applies to a
large class of intermediate logics, has been proposed in [76, 131]. The resulting calculi are
obtained by adding to the labelled intuitionistic system G3I (see Table 5.1) new rules,
which correspond to the peculiar frame conditions of the considered logics.

The (formulas defining) frame conditions, to which the method in [76] applies, are
called regular and geometric formulas. Regular formulas are conjunctions of formulas of
the form

reg ∀x(P1& . . .&Pm → Q1 ∨ . . . ∨Qn)

62

whereas geometric formulas consist of conjunctions of formulas of the shape

geom ∀x(P1& . . .&Pm → ∃y(M1 ∨ . . . ∨Mn))

where in both cases x, y are sequences of bound variables, each Pi is a relational
atom, each Mj is a conjunction of relational atoms Qj1 , . . . , Qjk and y does not appear
in P1, . . . , Pm. Note that regular formulas are equivalent to geometric formulas where
y does not appear in Mi (for all i = 1, . . . , n). As shown in [76], the rule scheme
corresponding to regular formulas has the form

Q1, P1, . . . , Pm,Γ⇒ ∆ · · · Qn, P1, . . . , Pm,Γ⇒ ∆

P1, . . . , Pm,Γ⇒ ∆
(reg)

while the rule scheme corresponding to geometric formulas is of the shape

Q1[z1/y1], P1, . . . , Pm,Γ⇒ ∆ · · · Qn[zn/yn], P1, . . . , Pm,Γ⇒ ∆

P1, . . . , Pm,Γ⇒ ∆
(geom)

where each Qj indicates the multiset of relational atoms Qj1 , . . . , Qjk and z1, . . . , zn
are eigenvariables, i.e., variables not occurring in the conclusion. Note that we refer to
eigenvariables also as fresh variables.

Note that the accessibility relation 6 in all intermediate logics presented in Section 5.1
(except KP) is characterized by universal or so-called geometric axioms corresponding
to regular or geometric formulas.

Example 16 (LQ). The logic LQ is semantically characterized by the frame condition
∀xyz((x 6 y&x 6 z) → ∃w(y 6 w&z 6 w)). The corresponding geometric rule of the
form (geom) according to [76] is (w′ is a fresh variable):

y 6 w′, z 6 w′, x 6 y, x 6 z,Γ⇒ ∆

x 6 y, x 6 z,Γ⇒ ∆
(geomlq)

Theorem 5 ([76]). Cut is admissible in any extension of G3I by rules of the form (reg)
and (geom). Weakening and contraction are height-preserving (hp-) admissible and all
rules are hp-invertible (see Definition 28).

The work of [76] has been further extended in [133] where systems of labelled rules
are employed. The idea behind a system of rules is that two or more rules are combined
and need to be applied in a specific order in the derivation. The (generalized) geometric
formulas that can be handled with systems of rules are inductively defined as follows

GF0 ≡ ∀x(&Pi → ∃y1M1 ∨ · · · ∨ ∃ymMm)

GF1 ≡ ∀x(&Pi → ∃y1&GA0 ∨ · · · ∨ ∃ym&GF0)

GFn+1 ≡ ∀x(&Pi → ∃y1&GFk1 ∨ · · · ∨ ∃ym&GFkm)

63

where x, yi are sequences of bound variables, &Pi denotes a conjunction of atomic for-
mulas, each Mj is a conjunction of atomic formulas, the variables in yj are not free in
any Pi, &GFki denotes a conjunction of GFki-formulas and k1, . . . , km ≤ n.

The corresponding geometric rule schemes (GRSn+1) for the respective geometric
formula GFn+1 is inductively defined as follows [133]:

Γ′1 ⇒ ∆′1
...
D1

k1

...
Γ′′1 ⇒ ∆′′1

...
D1

...
z1 = z1, P ,Γ⇒ ∆ . . .

Γ′m ⇒ ∆′m
...
Dm

km

...
Γ′′m ⇒ ∆′′m

...
Dm

...
zm = zm, P ,Γ⇒ ∆

(GRSn+1)
P ,Γ⇒ ∆

where zi are eigenvariables, the derivations Diki use only logical rules and rules of the
form (GRSki) corresponding to the geometric formulas GFki , and the derivations Di use
only logical rules.

Example 17 ([133]). The frame condition for join semi-lattices has the form GF1:

∀xy∃z((x 6 z&y 6 z)&∀w(x 6 w&y 6 w → z 6 w))

The corresponding system of rules is

z 6 w, x 6 w, y 6 w,Γ′ ⇒ ∆′
(GRS2

1)
x 6 w, y 6 w,Γ′ ⇒ ∆′

...
x 6 z, y 6 z,Γ⇒ ∆

(GRS1
1)

Γ⇒ ∆

where z in (GRS1
1) is fresh and (GRS2

1) needs to be applied above (GRS1
1).

Example 18 (KP). The frame condition for KP has the form:

∀xyz((x 6 y&x 6 z)→ (y 6 z ∨ z 6 y ∨ ∃u(x 6 u&u 6 y&u 6 z&F (u, y, z))))

where F (u, y, z) abbreviates ∀v(u 6 v → ∃w(v 6 w&(y 6 w ∨ z 6 w))).
The corresponding system of rules is:

x 6 y, x 6 z, y 6 z,Γ⇒ ∆ x 6 y, x 6 z, z 6 y,Γ⇒ ∆

u 6 v, v 6 w,Γ′ ⇒ ∆′ u 6 v, y 6 w, z 6 w,Γ′ ⇒ ∆′

u 6 v,Γ′ ⇒ ∆′....
x 6 y, x 6 z, x 6 u, u 6 y, u 6 z,Γ⇒ ∆

x 6 y, x 6 z,Γ⇒ ∆

64

where u is fresh in the lower rule and w is fresh in the upper rule.

Theorem 6 ([133]). Cut is admissible in any extension of G3I by systems of rules
following the geometric scheme (GRSn+1).

With the extension of the geometric rule scheme to the generalized geometric rule
scheme for systems of rules, a larger class of intermediate logics can be captured (includ-
ing the class of intermediate logics that is captured by our procedure in Section 5.4).
Moreover, as pointed out in a remark in [133], the method to create systems of rules is
not only applicable to frame conditions, but also to axioms without quantifiers that are
in GF1, but not in GF0.

Example 19 ([133]). The Hilbert axiom for prelinearity has the form GF1:

(P → Q) ∨ (Q→ P)

The corresponding system of rules is

Q,P,Γ′ ⇒ ∆′

P,Γ′ ⇒ ∆′

...
Γ⇒ ∆

P,Q,Γ′′ ⇒ ∆′′

Q,Γ′′ ⇒ ∆′′

...
Γ⇒ ∆ (GRS1)

Γ⇒ ∆

Note that the system of rules in the previous example has some similarity with Avron’s
communication rule [10], i.e.

G | Γ,Γ′ ⇒ ∆ G | Σ′,Σ⇒ ∆′
(com)

G | Γ,Σ⇒ ∆ | Γ′,Σ′ ⇒ ∆′

5.3 Towards the Generation of Logical Hypersequent Rules

As mentioned in the previous section, the systematic procedure to generate structural
rules from Hilbert axioms introduced in [52] does not work for axioms belonging to a
class above P3, such as the axiom bd2 = ξ ∨ (ξ ⊃ (ϕ ∨ (ϕ ⊃ ψ))) ∈ P4.

Example 20. The axioms defining the logics Bdn (n > 1), SM and KP are above the
class P3 and hence cannot be handled by the algorithm described in Theorem 3.

Thus, to try to capture these logics, one has to think of new ways to suitably adapt
the systematic procedure in [52] to create rules out of axioms. Possible solutions are
to change the base calculus, which was done e.g. in [62, 59], and/or to create logical
instead of structural rules out of the given axioms, see e.g. the general strategy from [62]
described in Section 5.2.

We now introduce a transformation procedure that combines a heuristic method with
the procedure in [62]. Since adding logical rules to the base calculus requires some further

65

ϕ⇒ ϕ ⊥ ⇒
G | Γ⇒ ∆ | Γ⇒ ∆

G | Γ⇒ ∆
(ec) G

G | Γ⇒ ∆
(ew)

G | Γ⇒ ϕ,∆ G | Γ, ψ ⇒ ∆

G | Γ, ϕ ⊃ ψ ⇒ ∆
(⊃, l) G | Γ, ϕ⇒ ψ

G | Γ⇒ ϕ ⊃ ψ,∆ (⊃, r) G | Γ⇒ ∆

G | Γ⇒ ⊥,∆ (⊥, r)

G | Γ⇒ ϕ,∆ G | Γ⇒ ψ,∆

G | Γ⇒ ϕ ∧ ψ,∆ (∧, r) G | ϕ,ψ,Γ⇒ ∆

G | ϕ ∧ ψ,Γ⇒ ∆
(∧, l) G | Γ⇒ ϕ,ϕ,∆

G | Γ⇒ ϕ,∆
(c, r)

G | ϕ,Γ⇒ ∆ G | ψ,Γ⇒ ∆

G | ϕ ∨ ψ,Γ ⇒ ∆
(∨, l) G | Γ⇒ ϕ,ψ,∆

G | Γ⇒ ϕ ∨ ψ,∆ (∨, r) G | Γ, ϕ, ϕ⇒ ∆

G | Γ, ϕ⇒ ∆
(c, l)

G | Γ⇒ ϕ,∆ H | ϕ,Σ⇒ Π

G | H | Γ,Σ⇒ Π,∆
(cut)

G | Γ⇒ ∆

G | Γ⇒ ϕ,∆
(w, r)

G | Γ⇒ ∆

G | Γ, ϕ⇒ ∆
(w, l)

Table 5.3: Multiple-conclusion hypersequent calculus HLJm

investigation on how the various logical rules interact with each other, we cannot provide
uniform proofs of soundness, completeness and cut elimination. As a case study, we
apply the combined method to the logic Bd2 and present ad-hoc proofs of these results.
This way we define a first cut-free hypersequent calculus for this particular logic.

From Axioms to Logical Rules

Inspired by [154], we use as base calculus (the hypersequent version of) Maehara’s calculus
LJm for intuitionistic logic [160]. This is a multiple-conclusion version of LJ where the
intuitionistic restriction, i.e., that the consequent of a sequent contains at most one
formula, applies only to the right rule of ⊃ (and ∀, in the first order case). The rule
schemas for the hypersequent version of LJm (we call this calculus HLJm) are depicted
in Table 5.3.

Our transformation procedure to create logical rules out of axioms again uses the
following two key ingredients:

(1) the invertibility of the logical rules for the connectives ∧,∨, (⊥, r) and the restricted
invertibility of the rule (⊃, r) 1 in HLJm, and

(2) the Ackermann lemma (see Lemma 4).

Lemma 4 ([52]). The hypersequent (0) G | ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψm interpreted as a
zero-premise rule is equivalent to the rules

G | ψ1,Σ⇒ Π · · · G | ψm,Σ⇒ Π

G | ϕ1, . . . , ϕn,Σ⇒ Π
(1)

G | Γ⇒ ϕ1 · · · G | Γ⇒ ϕn

G | Γ⇒ ψ1, . . . , ψm
(2)

1Note that an application of the rule (⊃, r) in HLJm deletes the context in the succedent of the
sequent. Hence, this rule is invertible only if the sequent in the conclusion is already single-conclusion.

66

where Γ,Σ,Π are fresh metavariables for multisets of formulas.

Proof. “(0) ⇒ (1)”: Follows by m applications of (cut) (and applications of contraction
and weakening), i.e.

G | ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψm

G | ϕ1, . . . , ϕn,Σ⇒ Π, ψ1, . . . , ψm G | ψm,Σ⇒ Π
(cut)

G | ϕ1, . . . , ϕn,Σ⇒ Π, ψ1, . . . , ψm−1 G | ψm−1,Σ⇒ Π
(cut)

G | ϕ1, . . . , ϕn,Σ⇒ Π, ψ1, . . . , ψm−2
...

...
G | ϕ1, . . . , ϕn,Σ⇒ Π

“(0) ⇒ (2)”: Analogous – follows by n applications of (cut) (and contraction and
weakening).

“(0)⇐ (1)”: Follows by instantiating Σ = ∅ and Π = ψ1, . . . , ψm.
“(0)⇐ (2)”: Follows by instantiating Γ = ϕ1, . . . , ϕn.

However, the axioms that can be handled with this procedure need to be of a specific
form due to the restricted invertibility of the (⊃, r) rule. Hence we define the following
grammar:

Definition 29. Let AxI be the set of axioms generated by the following grammar (I is
the initial variable):

I = R1 ∨ I | I ∨R1 | P1 R1 = P2 | C2

P1 = C2 ⊃ C1 | C2 ⊃ C2 P2 = C2 ⊃ C2

C1 = P2 � C2 | C2 � P2 C2 = C2 � C2 | pi
for � ∈ {∧,∨}, i ∈ {1, . . . , n}

Note that the outermost disjunction (∨ in I) corresponds to the | in hypersequents,
whereas the other disjunctions (∨ in C2) correspond to the logical connective ∨.

For example, the bd2 axiom, the law of excluded middle axiom em or the axiom for
prelinearity prel (see Table 5.2) are in AxI . The following algorithm now shows that
every axiom withinAxI can be transformed into a set of equivalent logical (or structural)
hypersequent rules.

Theorem 7. Every axiom α ∈ AxI can be transformed into a set of equivalent logical
(or structural) hypersequent rules.

Proof. Let α ∈ AxI . α is hence of the form α1 ∨ · · · ∨ αn where one αj is generated
by P1 and all other α1, . . . , αj−1, αj+1, . . . αn are generated by R1 in the grammar of
Definition 29. Hence, α is equivalent to a hypersequent of the form

G |⇒ α1 | · · · |⇒ αn

W.l.o.g. we assume that αn = αj is generated by P1.

67

Step (i): By the invertibility of the rules (∧, l), (∧, r), (∨, l), (∨, r), (⊥, r) and (when
there is no context present) (⊃, r), we obtain rules of the form

G | α111
, . . . , α1k1

⇒ α′1l1 , . . . , α
′
1m1
| · · · | αn1n

, . . . , αnkn ⇒ α′nln , . . . , α
′
nmn

, α∗
(1)

where each αiji , i = 1 . . . n does not contain any logical connective and α∗ is of the form
ϕ ⊃ ψ. Note that α∗ is not necessarily present in the hypersequent; in that case we
obtain rules of the form

G | α111
, . . . , α1k1

⇒ α′1l1 , . . . , α
′
1m1
| · · · | αn1n

, . . . , αnkn ⇒ α′nln , . . . , α
′
nmn

(1′)

Step (ii): Next, we replace each component

αi1i , . . . , αiki ⇒ α′ili , . . . , α
′
imi

in its conclusion with
Γi,Σi ⇒ ∆i

and, if present, replace the component

αn1n
, . . . , αnkn ⇒ α′nln , . . . , α

′
nmn

, α∗

in its conclusion with
Γn,Σn ⇒ ∆n, α

∗

We add imi new premises (G | Γi ⇒ αi11
), . . . , (G | Γi ⇒ αiki), (G | α

′
ili
,Σi ⇒

∆i), . . . , (G | α′imi ,Σi ⇒ ∆i) for i = 1, . . . , n, thus obtaining the rule

G | Γ1 ⇒ α111
· · · G | Σn, α

′
nmn
⇒ ∆n

G | · · · | Γ1,Σ1 ⇒ ∆1 | · · · | Γn,Σn ⇒ ∆n, α
∗ (2)

If α∗ is not present in any component of the hypersequent, we obtain a rule

G | Γ1 ⇒ α111
· · · G | Σn, α

′
nmn
⇒ ∆n

G | · · · | Γ1,Σ1 ⇒ ∆1 | · · · | Γn,Σn ⇒ ∆n
(2′)

The equivalence of the rule (2) (or (2′), resp.) with rule (1) (or (1′), resp.) is ensured by
Lemma 4. Note that after this step we only have metavariables Γi,Σi,∆i and at most
one occurrence of α∗ containing logical connectives in the conclusion of the rule r.

Step (iii): Let S be the set of premises of rule (2), resp. (2′). Now we eliminate
from S all metavariables β not occurring in the conclusion of r (note that we do not
eliminate metavariables from S that are subformulas of the logical formula occurring in
the conclusion of r). Let SS = {G | Γ′i ⇒ β : 0 ≤ i ≤ k} (SA = {G | Σ′j , β ⇒ ∆′j :
0 ≤ j ≤ m}, resp.) be the subset of premises which have at least one occurrence of
β in the succedent (antecedent, resp.). If SS = ∅, we remove SA from S. Similar, if
SA = ∅, we remove SS . Furthermore, let Scut be the set of all hypersequents of the form

68

G | Σj ,Γi ⇒ ∆j where 1 ≤ j ≤ m and 1 ≤ i ≤ k and G | γ,Σ ⇒ ∆ (or G | Γ ⇒ γ)
where γ is a subformula of the logical formula in the conclusion of r. Let r′ be the rule
obtained by replacing SA ∪ SS with Scut. The number of variables not occurring in the
conclusion decreases by one. We show that r′ is equivalent to r.

“⇒”: Follows by using cut on the premises.
“⇐”: Let β′ =

∨k
i=1 Γi and instantiate all β with β′. Then all the premisesG | Γi ⇒ β′

are provable. G | β′,Σj ⇒ ∆j is derivable using the (∨, l) rule. By applying r, we get
the conclusion of r′.

Note that the resulting rules are logical if α∗ occurs in a component of the hyperse-
quent and they are structural, otherwise.

This algorithm produces logical (or structural) rules for axioms within AxI . For
example, it transforms the bd2 axiom into a logical hypersequent rule, and the axioms
em or prel into structural hypersequent rules. However, these newly generated rules do
not necessarily preserve cut elimination when they are added to HLJm. Therefore, we
need to add a heuristic step to our procedure as was done for the calculi extended with
logical rules in [62]. This heuristic step was in particular inspired by the work in [155],
where a cut free sequent calculus for the modal logic K4 was introduced.

(Step 1) For any axiom α ∈ AxI , we first apply the algorithm in Theorem 7 to obtain a
logical rule r equivalent to α.

(Step 2) If HLJm extended with r is a cut-free system, we are done. Otherwise, we search
for a concrete counterexample, which is a hypersequent only derivable using cuts,
by inspecting the case where cut elimination fails.

(Step 3) If we have a counterexample and its derivation with applications of cut, we see
if we can make the original rule stronger by cutting over the premises, and go to
(Step 2) (else, we get stuck).

An Example: a Cut-free Hypersequent Calculus for Bd2

Among the seven interpolable propositional intermediate logics, Bd2 was the only one
still lacking a cut-free hypersequent calculus. Bd2 is obtained by extending Int with bd2.

We show how to construct a hypersequent calculus for Bd2 according to three steps
explained above.

Step 1: The algorithm in Theorem 7 works as follows:
⇒ ξ ∨ ξ ⊃ (ϕ ∨ (ϕ ⊃ ψ))

−→ G |⇒ ξ |⇒ ξ ⊃ (ϕ ∨ (ϕ ⊃ ψ))

−→(i)
G |⇒ ξ | ξ ⇒ ϕ ∨ (ϕ ⊃ ψ)

−→(i)
G |⇒ ξ | ξ ⇒ ϕ,ϕ ⊃ ψ

69

−→(ii) G | ξ,Σ′ ⇒ ∆′ G | Γ⇒ ξ G | ϕ,Σ⇒ ∆

G | Σ′ ⇒ ∆′ | Γ,Σ⇒ ∆, ϕ ⊃ ψ

−→(iii) G | Γ,Σ′ ⇒ ∆′ G | ϕ,Σ⇒ ∆
(bd2)′′

G | Σ′ ⇒ ∆′ | Γ,Σ⇒ ∆, ϕ ⊃ ψ

We can simplify the rule as follows (by contraction and weakening):

G | Γ,Σ′ ⇒ ∆′ G | ϕ,Γ⇒ ∆
(bd2)′

G | Σ′ ⇒ ∆′ | Γ⇒ ∆, ϕ ⊃ ψ

However (bd2)′ does not preserve cut elimination when added to HLJm.
Step 2: A concrete counterexample is

⇒ α | α⇒ β, α ⊃ ((α ⊃ β) ⊃ δ)

which can be proved with a cut,

α⇒ α

β ⇒ β

α, β ⇒ β
(bd2)′⇒ α | α⇒ β,¬β

α⇒ α
α⇒ δ, β, α

β ⇒ β

β, α⇒ δ, β
(⊃, l)

α, α ⊃ β ⇒ δ, β
⊥ ⇒

⊥, α, α ⊃ β ⇒ δ
(⊃, l)¬β, α, α ⊃ β ⇒ δ

(⊃, r)¬β, α⇒ (α ⊃ β) ⊃ δ
(⊃, r)¬β ⇒ α ⊃ ((α ⊃ β) ⊃ δ)
(cut)⇒ α | α⇒ β, α ⊃ ((α ⊃ β) ⊃ δ)

but not without it, as is shown by inspecting all possible derivations, e.g.:

α⇒ α

α, α⇒ β

(bd2)′⇒ α | α⇒ β, α ⊃ ((α ⊃ β) ⊃ δ)

Step 3: The derivation of the counterexample above can be rewritten as

...d1
G | Γ,Γ′ ⇒ ∆′

...d2
G | Γ, β ⇒ ∆

(bd2)′
G | Γ′ ⇒ ∆′ | Γ⇒ ∆,¬β

...d3
G | ϕ⇒ ψ, β G | ⊥, ϕ⇒ ψ

(⊃, l)
G | ¬β, ϕ⇒ ψ

(⊃, r)
G | ¬β ⇒ ϕ ⊃ ψ

(cut)
G | Γ′ ⇒ ∆′ | Γ⇒ ∆, ϕ ⊃ ψ

We can cut over the premises in d2 and d3, hence obtaining (together with the premise
in d1 – the fourth premise is initial) the following rule (bd2)∗:

G | Γ′,Γ⇒ ∆′ G | Γ, ϕ⇒ ψ,∆
(bd2)∗

G | Γ′ ⇒ ∆′ | Γ⇒ ϕ ⊃ ψ,∆

70

The hypersequent calculus HBd2 is then obtained by extending HLJm with (bd2)∗.
We present ad-hoc proofs of soundness, completeness and cut elimination for HBd2. We
start by showing that HBd2 is sound and complete for the logic Bd2.

Theorem 8 (Soundness and Completeness). For any hypersequent G

`HBd2 G iff `LJ+{⇒bd2} I(G)

Proof. “⇒”: For any hypersequent G, we show that if `HBd2 G then `LJ+{⇒bd2} I(G)
(recall Definition 13). By induction on the height (see Definition 9) of a derivation of G.
The base case (G is an axiom) is easy. For the inductive case it suffices to see that for
each inference rule in HBd2 with premise(s) G1 (and G2), the sequent I(G1) ⇒ I(G)
(I(G1), I(G2) ⇒ I(G)) is derivable in LJ+{⇒ bd2}. The only non-trivial case to show
is (bd2)∗:

`LJ+{⇒bd2} I(G | Γ′,Γ⇒ ∆′), I(G | Γ, ϕ⇒ ψ,∆)⇒ I(G | Γ′ ⇒ ∆′ | Γ⇒ ϕ ⊃ ψ,∆)

which follows by a (cut) with the axiom bd2, i.e.,⇒
∧

Γ∨(
∧

Γ ⊃ (ϕ∨(ϕ ⊃ ψ))). Note
that for simplicity we omit the context G and write Γ,Γ′ (∆,∆′) instead of

∧
Γ,

∧
Γ′

(
∨

∆,
∨

∆′) in the following derivation:

71

ϕ⇒ ϕ Γ⇒ Γ
(∧, r)

ϕ,Γ⇒ Γ ∧ ϕ

ψ,ϕ⇒ ψ
(⊃, r)

ψ ⇒ ϕ ⊃ ψ
(∨, r)

ψ ⇒ (ϕ ⊃ ψ) ∨∆
∆⇒ ∆ (∨, r)

∆⇒ (ϕ ⊃ ψ) ∨∆
(∨, l)

ψ ∨∆⇒ (ϕ ⊃ ψ) ∨∆
(⊃, l)

Γ ∧ ϕ ⊃ ψ ∨∆, ϕ,Γ⇒ (ϕ ⊃ ψ) ∨∆

ψ,ϕ⇒ ψ
(⊃, r)

ψ ⇒ ϕ ⊃ ψ
(∨, r)

ψ ⇒ (ϕ ⊃ ψ) ∨∆
(⊃, l)

(∗∗) Γ ∧ ϕ ⊃ ψ ∨∆, ϕ ⊃ ψ,Γ⇒ (ϕ ⊃ ψ) ∨∆

Γ⇒ Γ (w, l)
Γ ∧ ϕ ⊃ ψ ∨∆,Γ⇒ Γ

ϕ⇒ ϕ Γ⇒ Γ
(∧, r)

ϕ,Γ⇒ Γ ∧ ϕ

ψ,ϕ,⇒ ψ
(⊃, r)

ψ,ϕ,⇒ ϕ ⊃ ψ
(∨, r)

ψ,ϕ,⇒ (ϕ ⊃ ψ) ∨∆
∆⇒ ∆ (∨, r)

∆, ϕ⇒ (ϕ ⊃ ψ) ∨∆
(∨, l)

ψ ∨∆, ϕ⇒ (ϕ ⊃ ψ) ∨∆
(⊃, l)

Γ ∧ ϕ ⊃ ψ ∨∆, ϕ,Γ⇒ (ϕ ⊃ ψ) ∨∆
...(∗∗)

(∨, l)
Γ ∧ ϕ ⊃ ψ ∨∆, ϕ ∨ (ϕ ⊃ ψ),Γ⇒ (ϕ ⊃ ψ) ∨∆

(⊃, l)
Γ ∧ ϕ ⊃ ψ ∨∆,Γ ⊃ (ϕ ∨ (ϕ ⊃ ψ)),Γ⇒ (ϕ ⊃ ψ) ∨∆

(⊃, r)
Γ ∧ ϕ ⊃ ψ ∨∆,Γ ⊃ (ϕ ∨ (ϕ ⊃ ψ))⇒ Γ ⊃ (ϕ ⊃ ψ) ∨∆

(∨, r)
Γ ∧ ϕ ⊃ ψ ∨∆,Γ ⊃ (ϕ ∨ (ϕ ⊃ ψ))⇒ (Γ′ ⊃ ∆′) ∨ (Γ ⊃ (ϕ ⊃ ψ) ∨∆)

(w, l)
(∗) Γ′ ∧ Γ ⊃ ∆′,Γ ∧ ϕ ⊃ ψ ∨∆,Γ ⊃ (ϕ ∨ (ϕ ⊃ ψ))⇒ (Γ′ ⊃ ∆′) ∨ (Γ ⊃ (ϕ ⊃ ψ) ∨∆)

⇒ Γ ∨ (Γ ⊃ (ϕ ∨ (ϕ ⊃ ψ)))

Γ⇒ Γ Γ′ ⇒ Γ′ (∧, r)
Γ,Γ′ ⇒ Γ′ ∧ Γ ∆′ ⇒ ∆′

(⊃, l)
Γ′ ∧ Γ ⊃ ∆′,Γ,Γ′ ⇒ ∆′

(⊃, r)
Γ′ ∧ Γ ⊃ ∆′,Γ⇒ Γ′ ⊃ ∆′

(∨, r)
Γ′ ∧ Γ ⊃ ∆′,Γ⇒ (Γ′ ⊃ ∆′) ∨ (Γ ⊃ (ϕ ⊃ ψ) ∨∆)

(w, l)
Γ′ ∧ Γ ⊃ ∆′,Γ ∧ ϕ ⊃ ψ ∨∆,Γ⇒ (Γ′ ⊃ ∆′) ∨ (Γ ⊃ (ϕ ⊃ ψ) ∨∆)

...(∗)
(∨, l)

Γ′ ∧ Γ ⊃ ∆′,Γ ∧ ϕ ⊃ ψ ∨∆,Γ ∨ (Γ ⊃ (ϕ ∨ (ϕ ⊃ ψ)))⇒ (Γ′ ⊃ ∆′) ∨ (Γ ⊃ (ϕ ⊃ ψ) ∨∆)
(cut)

Γ′ ∧ Γ ⊃ ∆′,Γ ∧ ϕ ⊃ ψ ∨∆⇒ (Γ′ ⊃ ∆′) ∨ (Γ ⊃ (ϕ ⊃ ψ) ∨∆)

72

“⇐”: We show that if `LJ+{⇒bd2} I(G) then `HBd2 G. All rules of LJ are derivable
in HBd2. Hence it only remains to show a proof of the axiom bd2 using (bd2)∗:

ϕ⇒ ϕ ϕ,ψ ⇒ ψ, ξ
(bd2)∗⇒ ϕ | ϕ⇒ ψ,ψ ⊃ ξ
(∨, r)⇒ ϕ | ϕ⇒ ψ ∨ (ψ ⊃ ξ)

(⊃, r)⇒ ϕ | ⇒ ϕ,ϕ ⊃ (ψ ∨ (ψ ⊃ ξ))
(∨, r), (w, r)⇒ ϕ ∨ (ϕ ⊃ (ψ ∨ (ψ ⊃ ξ))) | ⇒ ϕ ∨ (ϕ ⊃ (ψ ∨ (ψ ⊃ ξ)))
(ec)⇒ ϕ ∨ (ϕ ⊃ (ψ ∨ (ψ ⊃ ξ)))

Cut elimination for HBd2

Recall the general cut elimination theorem for hypersequent calculi that contain reductive
and substitutive rules (see Theorem 2). This theorem does not apply to HBd2 (and
HLJm) because not all logical rules of the calculus are substitutive (see Definition 17,
extended to the multiple-conclusion case).

Lemma 5. The rule
G | Γ, ϕ⇒ ψ

G | Γ⇒ ϕ ⊃ ψ,∆ (⊃, r)

of the calculus HLJm is not substitutive.

Proof. Assume that (⊃, r) is substitutive, i.e., for any instance
G1

G of (⊃, r), any multiple-
conclusioned hypersequent H and G′ ∈ CUT (G,H), there exists G′1 ∈ CUT (G1, H) such

that
G′1
G′ is an instance of (⊃, r). Consider the following instance of the rule:

α,ϕ⇒ ψ

α⇒ ϕ ⊃ ψ (⊃, r)

and let H = γ ⇒ α, δ. Then G′ = γ ⇒ ϕ ⊃ ψ, δ and G′1 = γ, ϕ⇒ ψ, δ, obtaining:

γ, ϕ⇒ ψ, δ

γ ⇒ ϕ ⊃ ψ, δ

This is however clearly not an instance of (⊃, r) and (⊃, r) is thus not substitutive.

The cut elimination proof for the calculus HBd2 therefore requires another strategy.
Consider for example the following application of cut with cut formula α:

...dr
G | Γ⇒ ∆, α

...dl
H | α,Σ⇒ Π

(cut)
G | H | Γ,Σ⇒ ∆,Π

73

We call dl (dr, resp.) the derivation ending in the premise of cut with the cut formula
on the left (right, resp.) side of the sequent. Our cut elimination strategy distinguishes
by cases according to the cut formula:

For non-atomic cut formulas having ∧ and ∨ as outermost connective, we use the
invertibility of their respective logical rules to replace the cut by smaller ones.

Cut formulas having ⊃ as outermost connective and atomic cut formulas require a
different handling. In this case we proceed by shifting the cut upwards in a specific order.
First we move the cut upwards in the derivation dr in which the cut formula is on the
right side of the sequents (Lemma 8). If the cut formula is atomic, we can move the cut
upward and then finally remove it.

When the cut formula is introduced by a weakening or in the context of an application
of (⊃, r), the cut can be removed, e.g.:

...d′r
G | Γ, ϕ⇒ ψ

(⊃, r)
G | Γ⇒ ϕ ⊃ ψ, α

...dl
H | α,Σ⇒ Π

G | H | Γ,Σ⇒ ϕ ⊃ ψ,Π

−→

...d′r
G | Γ, ϕ⇒ ψ

(⊃, r)
G | Γ⇒ ϕ ⊃ ψ

(ew), (w, l), (w, r)
G | H | Γ,Σ⇒ ϕ ⊃ ψ,Π

If the cut formula is introduced by (⊃, r) or (bd2)∗ we proceed by shifting the cut
upwards in the left derivation dl until the cut formula is introduced on the left side of
the sequent. Finally, we cut the premises of the two last applied rules to replace the cut
by smaller ones (Lemma 7). However, moving the cut upwards can be problematic in
presence of (⊃, r) or (bd2)∗ in dl. E.g., in the following situation:

...dr
G | Γ′ ⇒ ∆′ | Γ⇒ α ⊃ β,∆

...dl
H | Σ, α ⊃ β, ϕ⇒ ψ

(⊃, r)
H | Σ, α ⊃ β ⇒ ϕ ⊃ ψ,Π

(cut)
G | H | Γ′ ⇒ ∆′ | Γ,Σ⇒ ∆, ϕ ⊃ ψ,Π

The problem is the presence of the context ∆ that does not permit the subsequent
application of (⊃, r) to the following derivation

...dr
G | Γ′ ⇒ ∆′ | Γ⇒ α ⊃ β,∆

...dl
H | Σ, α ⊃ β, ϕ⇒ ψ

(cut)
G | Γ′ ⇒ ∆′ | H | Γ,Σ, ϕ⇒ ∆, ψ

We show that it is always possible to shift the cut upwards over dl when the right
premise ends in an introduction rule of the cut formula, i.e. (⊃, r) or (bd2)∗. For instance,
assume in the above case that the cut formula is introduced by (bd2)∗:

...d′r
G | Γ′,Γ⇒ ∆′

...d′′r
G | Γ, α⇒ β,∆

(bd2)∗
G | Γ′ ⇒ ∆′ | Γ⇒ α ⊃ β,∆

...dl
H | Σ, α ⊃ β, ϕ⇒ ψ

(cut)
G | Γ′ ⇒ ∆′ | H | Γ,Σ, ϕ⇒ ∆, ψ

74

The original cut above is then shifted upwards as follows (we omit the contexts G
and H for simplicity):

...d′r
Γ′,Γ⇒ ∆′

(w, l), (ew)
Γ′ ⇒ ∆′ | Γ′,Γ,Σ⇒ ∆′

...dr
Γ′ ⇒ ∆′ | Γ⇒ α ⊃ β,∆

...dl
Σ, α ⊃ β, ϕ⇒ ψ

(cut)
Γ′ ⇒ ∆′ | Γ,Σ, ϕ⇒ ∆, ψ

(bd2)∗
Γ′ ⇒ ∆′ | Γ′ ⇒ ∆′ | Γ,Σ⇒ ∆, ϕ ⊃ ψ

(ec)
Γ′ ⇒ ∆′ | Γ,Σ⇒ ∆, ϕ ⊃ ψ

To formalize this cut elimination proof, we need the following definition of cut grade:

Definition 30. The cut grade ρ(d) of a derivation d is the maximal complexity of cut
formulas in d+ 1 (ρ(d) = 0 if d is cut free).

Lemma 6 (Inversion).

(i) If d `HBd2 G | Γ, ϕ ∨ ψ ⇒ ∆ then one can find d1 `HBd2 G | Γ, ϕ ⇒ ∆ and
d2 `HBd2 G | Γ, ψ ⇒ ∆.

(ii) If d `HBd2 G | Γ⇒ ϕ ∨ ψ,∆ then one can find d1 `HBd2 G | Γ⇒ ϕ,ψ,∆.
(iii) If d `HBd2 G | Γ, ϕ ∧ ψ ⇒ ∆ then one can find d1 `HBd2 G | Γ, ϕ, ψ ⇒ ∆.
(iv) If d `HBd2 G | Γ ⇒ ϕ ∧ ψ,∆ then one can find d1 `HBd2 G | Γ ⇒ ϕ,∆ and

d2 `HBd2 G | Γ⇒ ψ,∆.
(v) If d `HBd2 G | Γ⇒ ϕ ⊃ ψ then one can find d1 `HBd2 G | Γ, ϕ⇒ ψ.
(vi) If d `HBd2 G | Γ⇒ ⊥,∆ then one can find d1 `HBd2 G | Γ⇒ ∆.

such that ρ(di) ≤ ρ(d) and |di| ≤ |d| for i = 1, 2.

Proof. (ii) To deal with internal and external contraction, we have to prove a more
general statement, namely:
(ii)’ If d `HBd2 G | Γ1 ⇒ (ϕ ∨ ψ)n1 ,∆1 | · · · | Γk,⇒ (ϕ ∨ ψ)nk ,∆k then one can find
d1 `HBd2 G | Γ1 ⇒ (ϕ,ψ)n1 ,∆1 | · · · | Γk ⇒ (ϕ,ψ)nk ,∆k. We assume nj > 0 for some
j, 1 ≤ j ≤ k. By induction on |d|. Consider the last inference rule r in d:

– r is (∨, r) and some ϕ∨ψ is the principal formula. Then we get d′ `HBd2 G | Γ1 ⇒
∆1, ϕ, ψ, (ϕ ∨ ψ)n1−1 | · · · | Γk ⇒ ∆k, (ϕ ∨ ψ)nk . The claim follows by application
of the inductive hypothesis.

– r is any other rule. The claim follows by application of the inductive hypothesis
and subsequent application(s) of r.

(i) and (iii)–(vi) can be shown analogously. Note that in the case of (v), we only have
invertibility when there is no context present in the succedent.

Lemma 7 (Shift Left and Reduction of ⊃). Let dl and dr be derivations in HBd2 such
that:

• dl is a derivation of H | Σ1, (α ⊃ β)n1 ⇒ Π1 | · · · | Σk, (α ⊃ β)nk ⇒ Πk,

75

• dr is a derivation of G | Γ⇒ α ⊃ β,∆,
• ρ(dl) ≤ |α ⊃ β| and ρ(dr) ≤ |α ⊃ β|,
• dr ends with an application of (⊃, r) or (bd2)∗ introducing α ⊃ β.

Then we can find a derivation d of G | H | Γn1 ,Σ1 ⇒ ∆n1 ,Π1 | · · · | Γnk ,Σk ⇒ ∆nk ,Πk

in HBd2 with ρ(d) ≤ |α ⊃ β|.

Proof. By induction on |dl|. If dl ends in an axiom, we are done. Otherwise, consider
the last inference rule r applied in dl.

– Suppose that r acts only on H, or r is any rule other than (⊃, l), (⊃, r) or (bd2)∗

introducing α ⊃ β. Then the claim follows by applications of the inductive hy-
pothesis, r and, if needed, weakening and contraction.

– When r = (⊃, l) and α ⊃ β is the principal formula the claim follows by applying
the inductive hypothesis and subsequent cuts with cut formulas α and β.

– When dr ends in an application of (⊃, r), the required derivation is simply ob-
tained by applying the inductive hypothesis and r (note that in this case ∆ can be
taken to be empty and hence no context is added to the premises by the inductive
hypothesis).

– If dr ends with (bd2)∗ and r = (⊃, r) the case is handled as described previously.
Assume that dr ends with (bd2)∗ and r = (bd2)∗ as in the following derivation (we
omit the contexts for simplicity):

... d′r
Γ′,Γ⇒ ∆′

... d′′r
Γ, α⇒ β,∆

(bd2)∗
Γ′ ⇒ ∆′ | Γ⇒ α ⊃ β,∆

... d′l
Σ′,Σ1, (α ⊃ β)n1 ⇒ Π′

... d′′l
Σ1, (α ⊃ β)n1 , ϕ⇒ ψ,Π1

(bd2)∗
Σ′ ⇒ Π′ | Σ1, (α ⊃ β)n1 ⇒ ϕ ⊃ ψ,Π1

(cut)
Γ′ ⇒ ∆′ | Σ′ ⇒ Π′ | Γn1 ,Σ1 ⇒ ϕ ⊃ ψ,Π1,∆

n1

The cut is moved upwards as follows:

...d′r
Γ′,Γ⇒ ∆′

(w, l), (w, r)
Γ′,Γn1 ,Σ1 ⇒ ∆′

...dr
Γ′ ⇒ ∆′ | Γ⇒ α ⊃ β,∆

...d′′l
Σ1, (α ⊃ β)n1 , ϕ⇒ ψ,Π1

(cut)
Γ′ ⇒ ∆′ | Γn1 ,Σ1, ϕ⇒ ψ,∆n1 ,Π1

(bd2)∗
Γ′ ⇒ ∆′ | Γ′ ⇒ ∆′ | Γn1 ,Σ1 ⇒ ϕ ⊃ ψ,Π1,∆

n1

(ew), (ec)
Γ′ ⇒ ∆′ | Σ′ ⇒ Π′ | Γn1 ,Σ1 ⇒ ϕ ⊃ ψ,Π1,∆

n1

Lemma 8 (Shift Right). Let dl and dr be derivations in HBd2 such that:

• dl is a derivation of H | Σ, ϕ⇒ Π,
• ϕ is either atomic or of the form α ⊃ β,
• dr is a derivation of G | Γ1 ⇒ ϕn1 ,∆1 | · · · | Γk ⇒ ϕnk ,∆k,
• ρ(dl) ≤ |ϕ| and ρ(dr) ≤ |ϕ|.

76

Then we can find a derivation d of G | H | Γ1,Σ
n1 ⇒ ∆1,Π

n1 | · · · | Γk,Σ
nk ⇒ ∆k,Π

nk

in HBd2 with ρ(d) ≤ |ϕ|.

Proof. By induction on |dr|. If dr ends in an axiom, we are done. Otherwise, consider
the last inference rule r in dr.

– If r acts only on G or r is any rule other than a logical rule introducing ϕ then
the claim follows by applications of the inductive hypothesis, r and, if needed,
weakening or contraction. For example, consider the following case where r is
(∨, r) (we omit the contexts for better readability):

...
Γ,⇒ ϕ,ψ, ξ,∆

(∨, r)
Γ⇒ ϕ,ψ ∨ ξ,∆

...
Σ, ϕ⇒ Π

(cut)
Γ,Σ⇒ ∆,Π, ψ ∨ ξ

−→

...
Γ⇒ ϕ,ψ, ξ,∆

...
Σ, ϕ⇒ Π

(cut)
Γ,Σ⇒ ∆,Π, ψ, ξ

(∨, r)
Γ,Σ⇒ ∆,Π, ψ ∨ ξ

– If r is (⊃, r) and ϕ is not the principal formula, the claim follows by several appli-
cations of weakening, see e.g. the following example (again, we omit the contexts):

...
Γ, ψ ⇒ ξ

(⊃, r)
Γ⇒ ϕ,ψ ⊃ ξ,∆

...
Σ, ϕ⇒ Π

(cut)
Γ,Σ⇒ ∆,Π, ψ ⊃ ξ

−→

...
Γ, ψ ⇒ ξ

(⊃, r)
Γ⇒ ψ ⊃ ξ

(w, l) + (w, r)
Γ,Σ⇒ ∆,Π, ψ ⊃ ξ

– If r is (⊃, r) or (bd2)∗ and ϕ is the principal formula, the claim follows by applica-
tions of the inductive hypothesis, the corresponding rule r and Lemma 7.

Theorem 9 (Cut elimination). Cut elimination holds for HBd2.

Proof. Let d be a derivation in HBd2 with ρ(d) > 0. The proof proceeds by a double
induction on 〈ρ(d),#ρ(d)〉, where #ρ(d) is the number of applications of (cut) in d with
cut formulas of complexity ρ(d). Consider an uppermost application of (cut) in d with
a cut formula of complexity ρ(d). Let dl and dr be its premises, where dl is a derivation
of H | Σ, ϕ⇒ Π, and dr is a derivation of G | Γ⇒ ϕ,∆:

...dr
G | Γ⇒ ϕ,∆

...dl
H | Σ, ϕ⇒ Π

(cut)
G | H | Γ,Σ⇒ ∆,Π

We can find a proof of G | H | Γ,Σ ⇒ ∆,Π in which either ρ(d) decreases, or ρ(d)
stays the same and #ρ(d) decreases. Indeed we distinguish the following cases according
to the main connective of ϕ:

• ϕ is an atomic formula or ϕ = α ⊃ β. The claim follows by Lemma 8.

77

• Suppose ϕ = α∨β. By Lemma 6,we can find the derivations d′r ` G | Γ⇒ α, β,∆,
as well as d′l ` H | α,Σ⇒ Π and d′′l ` H | β,Σ⇒ Π, such that ρ(d′r), ρ(d′l), ρ(d′′l) <
|ϕ|. The claim follows by replacing the cut with cut formula α ∨ β with cuts on α
and β.
• The case ϕ = α ∧ β is similar since ∧ is also invertible on both sides (Lemma 6).

5.4 Towards a Systematic Procedure for Labelled Calculi

While in the previous section we have outlined a method that takes the syntactic speci-
fication of a logic as starting point, we now discuss a systematic method that starts from
the semantic specification of the logic. Inspired by the procedures to generate hyperse-
quent calculi from Hilbert axioms in [52, 62], we introduce a similar approach to generate
labelled sequent calculi from frame conditions. We provide proofs for soundness, com-
pleteness and cut elimination for the generated calculi, which subsume those introduced
in [76] for geometric formulas.

A Classification of Frame Conditions

In a first step, we start by classifying frame conditions, describing intermediate logics in
a hierarchy similar to the substructural hierarchy in [52] (see Section 5.2). This hierarchy
intuitively accounts for the difficulty to deal proof-theoretically with the corresponding
formulas of first-order classical logic. Our classification is based on the invertibility of the
logical/quantifier rules of the base calculus. In this case, we use the base calculus LK’,
i.e. a variant of the Gentzen LK calculus for first-order classical logic, which is called
G3c in [134] and is depicted in Table 5.4. All logical rules of LK’ are invertible, while
the universal (existential, respectively) quantifier is invertible on the right (on the left,
respectively) [134].

Note that w.l.o.g. we will only consider formulas in prenex normal form2. The class
of a formula is then determined solely by the alternation of universal and existential
quantifiers in the prefix. Intuitively, any formula within a class Πi will start with a
universal quantifier while any formula within a class Σj will start with an existential
quantifier. This leads to a classification which is essentially the arithmetical hierarchy.

Definition 31. Let A be a formula in first-order classical logic. The classes Πk and Σk

are defined as follows: A ∈ Σ0 and A ∈ Π0, if A is quantifier-free. Otherwise:

• if A is classically equivalent to ∃xB where B ∈ Πn then A ∈ Σn+1

• if A is classically equivalent to ∀xB where B ∈ Σn then A ∈ Πn+1

2Recall that a formula is in prenex normal form if it is of the form ♦1x1 . . .♦nxnA where ♦1 . . .♦n
are quantifiers ∀ or ∃ and the formula A is quantifier-free.

78

P,Γ⇒ ∆, P

A[y/x],Γ⇒ ∆

∃xA,Γ⇒ ∆
(∃, l) Γ⇒ ∆, A[y/x]

Γ⇒ ∆,∀xA (∀, r) Γ⇒ ∆, A Γ⇒ ∆, B

Γ⇒ ∆, A&B
(&, r)

Γ⇒ ∆, A

¬A,Γ⇒ ∆
(¬, l) Γ⇒ ∆, A[t/x]

Γ⇒ ∆,∃xA (∃, r) A[t/x],Γ⇒ ∆

∀xA,Γ⇒ ∆
(∀, l) A,Γ⇒ ∆ B,Γ⇒ ∆

A ∨B,Γ⇒ ∆
(∨, l)

A,Γ⇒ ∆

Γ⇒ ∆,¬A (¬, r) Γ⇒ ∆, A,B

Γ⇒ ∆, A ∨B (∨, r) A,B,Γ⇒ ∆

A&B,Γ⇒ ∆
(&, l)

Γ⇒ ∆, A B,Γ⇒ ∆

A→ B,Γ⇒ ∆
(→, l)

Γ⇒ ∆
A,Γ⇒ ∆

(w, l)
A,A,Γ⇒ ∆

A,Γ⇒ ∆
(c, l)

A,Γ⇒ ∆, B

Γ⇒ ∆, A→ B
(→, r) Γ⇒ ∆, A A,Γ⇒ ∆

Γ⇒ ∆
(cut)

Γ⇒ ∆
Γ⇒ ∆, A

(w, r)
Γ⇒ ∆, A,A

Γ⇒ ∆, A
(c, r)

y in (∃, l) and (∀, r) is an eigenvariable, P is atomic

Table 5.4: Sequent calculus LK’ [134]

All frame conditions for intermediate propositional logics presented in Section 5.1
with the exception of KP are within the class Π2. Moreover, note that all regular
formulas (universal axioms, see page 63) are within Π1, while the geometric formulas
of [76, 131] (see page 63) are within Π2. In particular, note that any formula within Π1

has only universal quantifiers ∀ in the prefix, while any formula within Π2 is of the form
∀x1, . . . , xn∃y1, . . . , ym for m,n ≥ 1.

We show below how to transform all formulas within the class Π2 into labelled rules
that preserve cut elimination when added to (a slightly modified version of) the calculus
G3I , see Table 5.1. The resulting rules are equivalent to the corresponding axioms, i.e.,
LK’ extended with the defined rules and LK’ extended with the original formula prove
the same sequents.

From Frame Conditions to Labelled Rules

Recall again the key ingredients for our transformation procedure described in Section 3.1:

(1) the invertibility of all logical rules, and the quantifier rules (∀, r) (i.e., introduction
of ∀ on the right) and (∃, l) (i.e., introduction of ∃ on the left) in LK’ [134], and

(2) the Ackermann lemma:

Lemma 9. The sequent A1, . . . , An ⇒ B1, . . . , Bm is equivalent to the rule

B1,Γ⇒ ∆ · · · Bm,Γ⇒ ∆

A1, . . . , An,Γ⇒ ∆

where Γ,∆ are fresh metavariables standing for multisets of formulas.

Proof. “⇒”: Follows by m applications of (cut) (and weakening), i.e.

79

A1, . . . , An ⇒ B1, . . . , Bm
(w, r), (w, l)

A1, . . . , An,Γ⇒ ∆, B1, . . . , Bm Bm,Γ⇒ ∆
(cut)

A1, . . . , An,Γ⇒ ∆, B1, . . . , Bm−1 Bm−1,Γ⇒ ∆
(cut)

A1, . . . , An,Γ⇒ ∆, B1, . . . , Bm−2
...

...
A1, . . . , An,Γ⇒ ∆

“⇐”: Follows by instantiating Γ = ∅ and ∆ = B1, . . . , Bm.

Theorem 10. Every frame condition F within the class Π2 can be transformed into a
set of equivalent labelled sequent rules.

Proof. Let F = ∀x∃yA, where A is a quantifier-free formula, x = x1, . . . , xh and y =
y1, . . . , yl. W.l.o.g. we assume that A is in disjunctive normal form and has the shape
B1 ∨ · · · ∨Bk where every Bi has the form Qi1& · · ·&Qin&¬Pi1& · · ·&¬Pim . Recall that
(possibly indexed) P,Q indicate relational atoms. By the invertibility of the rule (∀, r),
⇒ F is equivalent to ⇒ ∃yA.

We distinguish two cases according to whether F contains at least one existential
quantifier, i.e. F ∈ Π2, or it does not, i.e. F ∈ Π1.

• F ∈ Π1 (l = 0): By the invertibility of (∨, r), (&, r) and (¬, r), ⇒ A is equivalent
to a set of atomic sequents P ⇒ Q with P ,Q multisets of relational atoms Pir , Qis .
By Lemma 9, these sequents are equivalent to rules of the form:

Q,Γ⇒ ∆

P ,Γ⇒ ∆
(Π′1)

• F ∈ Π2 (l > 0): By Lemma 9, ⇒ ∃yA is equivalent to ∃yA,Γ⇒ ∆

Γ⇒ ∆
which is in

turn equivalent to A′,Γ⇒ ∆

Γ⇒ ∆
where A′ is obtained by replacing in A all y1, . . . , yl

with fresh variables y′1, . . . , y′l (eigenvariable condition). By the invertibility of
(∨, l), (∧, l) and (¬, l) we get

{Qi1 , . . . , Qin ,Γ⇒ ∆, Pi1 , . . . , Pim}i=1...k

Γ⇒ ∆
(Π2)

The resulting rules are equivalent to F .

Note that the (Π2) rule (which is, in fact, a rule schema) is invertible. To make (Π′1)
rules invertible we simply repeat P in its premises, thus obtaining

P ,Q,Γ⇒ ∆

P ,Γ⇒ ∆
(Π1)

which is equivalent with the rule (Π′1) in LK’.

80

Proposition 1. Let P ,Q be multisets of relational atoms Pi, Qi. Any (Π′1) rule of the
form

Q,Γ⇒ ∆

P ,Γ⇒ ∆
(Π′1)

is equivalent to the rule (Π1) of the form

P ,Q,Γ⇒ ∆

P ,Γ⇒ ∆
(Π1)

Proof. “⇒”: For the first direction, we simply use several applications of contraction and
an application of (Π′1).

P ,Q,Γ⇒ ∆
(Π′1)

P , P ,Γ⇒ ∆
(c, l)

P ,Γ⇒ ∆

“⇐”: For the other direction, we use an application of (Π1) and several applications
of weakening.

Q,Γ⇒ ∆
(w, l)

P ,Q,Γ⇒ ∆
(Π1)

P ,Γ⇒ ∆

Example 21 (LQ). The logic LQ is characterized by the frame condition F = ∀xyz((x 6
y&x 6 z) → ∃w(y 6 w&z 6 w)) = ∀xyz∃w(¬(x 6 y) ∨ ¬(x 6 z) ∨ (y 6 w&z 6 w)),
where F ∈ Π2. The algorithm described in Theorem 10 works as follows:

⇒ ∀xyz∃w(¬(x 6 y) ∨ ¬(x 6 z) ∨ (y 6 w&z 6 w))

−→ ⇒ ∃w(¬(x 6 y) ∨ ¬(x 6 z) ∨ (y 6 w&z 6 w))

−→ ∃w(¬(x 6 y) ∨ ¬(x 6 z) ∨ (y 6 w&z 6 w)),Γ⇒ ∆

Γ⇒ ∆

−→ ¬(x 6 y) ∨ ¬(x 6 z) ∨ (y 6 w&z 6 w),Γ⇒ ∆

Γ⇒ ∆

−→ ¬(x 6 y),Γ⇒ ∆ ¬(x 6 z),Γ⇒ ∆ y 6 w&z 6 w,Γ⇒ ∆

Γ⇒ ∆

−→ Γ⇒ ∆, x 6 y Γ⇒ ∆, x 6 z y 6 w, z 6 w,Γ⇒ ∆

Γ⇒ ∆

81

Note that, while the rule schema (Π1) coincides with the rule schema defined in
[76] for regular formulas (see Section 5.2), this is not the case for geometric formulas.
The rules of the form (Π2) generated by our procedure from geometric formulas might
contain relational atoms (Pi1 , . . . , Pim) on the right hand side of premises, see e.g. the
rule generated for LQ in Example 21. Such rules are not of the form (geom) presented
in [76], recall e.g. the rule from Example 16:

y 6 w, z 6 w, x 6 y, x 6 z,Γ⇒ ∆
(ΠG

2)
x 6 y, x 6 z,Γ⇒ ∆

However, geometric formulas are Π2 formulas of a particular shape. We show below
that the (Π2) rules that are generated by Theorem 10 for these formulas can easily be
transformed into rules without relational atoms on the right hand side of the sequent.
The resulting rules then coincide with the (geom) rules in [76].

Corollary 3. Geometric axioms are equivalent to rules of the form (geom).

Proof. Recall that geometric axioms are formulas in Π2 of the form ∀x∃yAG, where AG
is a quantifier-free formula, see Section 5.2. W.l.o.g. we assume that AG is in disjunctive
normal form and hence has the shape B1 ∨ · · · ∨ Bn ∨ C1 ∨ · · · ∨ Cm where each Bi is
Qi1& · · ·&Qik and each Cj is ¬Pj . Theorem 10 transforms such a geometric axiom into
the equivalent rule

{Qi1 , . . . , Qik ,Γ⇒ ∆}i=1...n {Γ⇒ ∆, Pj}j=1...m

Γ⇒ ∆
(Π′2)

The claim follows by showing that (Π′2) can be transformed into a rule

Q1, P1, . . . , Pm,Γ⇒ ∆ · · · Qn, P1, . . . , Pm,Γ⇒ ∆

P1, . . . , Pm,Γ⇒ ∆
(ΠG

2)

where each Qi is a multiset of Qi1 , . . . , Qik . Observe that (ΠG
2) has no relational atom

Pj on the right hand side and that it is a (geom) rule [76].
For one direction, we use (Π′2) and m initial sequents:

{Qi, P1, . . . , Pm,Γ⇒ ∆}i=1...n {P1, . . . , Pm,Γ⇒ ∆, Pj}j=1...m

P1, . . . , Pm,Γ⇒ ∆
(Π′2)

For the other direction, we first apply (ΠG
2) followed by m applications of (cut) (and

weakening):

. . .

Γ⇒ ∆, Pm
(w, l)

P1, . . . , Pm−1,Γ⇒ ∆, Pm

{Qi, P1, . . . , Pm,Γ⇒ ∆}i=1...n
(ΠG

2)
P1, . . . , Pm,Γ⇒ ∆

(cut)
P1, . . . , Pm−1,Γ⇒ ∆

(cut)
...

Γ⇒ ∆

82

Example 22 (LQ). The rule that we get by applying the algorithm in Theorem 10 for
the frame condition defining the logic LQ is (see Example 21):

Γ⇒ ∆, x 6 y Γ⇒ ∆, x 6 z y 6 w, z 6 w,Γ⇒ ∆
(Π′2)

Γ⇒ ∆

while the rule obtained in [76] is:

y 6 w, z 6 w, x 6 y, x 6 z,Γ⇒ ∆
(ΠG

2)
x 6 y, x 6 z,Γ⇒ ∆

(ΠG
2) is then obtained from (Π′2) as follows:

x 6 y, x 6 z,Γ⇒ ∆, x 6 y x 6 y, x 6 z,Γ⇒ ∆, x 6 z y 6 w, z 6 w, x 6 y, x 6 z,Γ⇒ ∆
(Π′2)

x 6 y, x 6 z,Γ⇒ ∆

whereas (Π′2) is derived from (ΠG
2) in the following way:

Γ⇒ ∆, x 6 y

Γ⇒ ∆, x 6 z
(w, l)

x 6 y, x 6 z,Γ⇒ ∆, x 6 z
y 6 w, z 6 w, x 6 y, x 6 z,Γ⇒ ∆

(ΠG
2)

x 6 y, x 6 z,Γ⇒ ∆
(cut)

x 6 y,Γ⇒ ∆
(cut)

Γ⇒ ∆

Like the labelled sequent calculi for quantified modal and temporal logics presented
in [48], our labelled calculi use rules that manipulate relational atoms in both sides of
the sequent. In particular, the rules for non-geometric formulas within Π2 are the only
rules of our newly generated calculi that introduce relational atoms in the succedent.
We will show that this is not an obstacle for the admissibility results analogous to those
in Theorem 5. The base calculus we will use is a slightly modified version of G3I (see
Table 5.1), which is obtained by adding initial sequents of the form

x 6 y,Γ⇒ ∆, x 6 y

to G3I . Note that these initial sequents are not present in the labelled systems for inter-
mediate logics of [76]. We also consider structural rules manipulating labelled formulas
and relational atoms on both sides of a sequent. Thus, in our base calculus, we use
the following structural rules for contraction and weakening where Z is either a labelled
formula u : ϕ or a relational atom x 6 y:

Γ⇒ ∆
Z,Γ⇒ ∆

(w, l)
Γ⇒ ∆

Γ⇒ ∆, Z
(w, r)

Z,Z,Γ⇒ ∆

Z,Γ⇒ ∆
(c, l)

Γ⇒ ∆, Z, Z

Γ⇒ ∆, Z
(c, r)

From now on, we denote by G3SI∗ the (super-intuitionistic) system obtained by
adding to our base calculus rules of the form (Π1) and (Π2) which are defined by applying
Theorem 10 to the set ∗ of formulas within the class Π2 corresponding to the properties
of the accessibility relation.

83

Lemma 10. Substitution of variables is hp-admissible (see Definition 28) in G3SI∗.

Proof. We show that if Γ⇒ ∆ is derivable in G3SI∗ and y is free for x in every formula
in Γ ⇒ ∆, then so is Γ[y/x] ⇒ ∆[y/x] with the same derivation height. Let d be the
derivation of Γ ⇒ ∆ in G3SI∗. We proceed by induction on |d|. When d ends in an
axiom or the conclusion of (⊥, l), we are done. Otherwise, consider the last inference
rule r in d.

• If r is (Π1) or any logical rule except (⊃, r), the claim follows by application of the
inductive hypothesis and r.

• If r is (⊃, r) with the eigenvariable condition, then either the substitution is vacuous
(and the result of the substitution is equivalent to Γ ⇒ ∆), or otherwise, x is not
an eigenvariable. Then we have to consider two cases: If y is not the eigenvariable
that is introduced in the premise, we apply the inductive hypothesis and (⊃, r).
Else, y coincides with the eigenvariable, e.g. in the following situation:

...
x 6 y, y : ϕ,Γ′ ⇒ ∆′, y : ψ

(⊃, r)
Γ′ ⇒ ∆′, x : ϕ ⊃ ψ

We first apply the inductive hypothesis, replacing y with a fresh metavariable z.
Then we apply the inductive hypothesis to substitute x with y and (⊃, r). We get

...
y 6 z, z : ϕ,Γ⇒ ∆′, z : ψ

(⊃, r)
Γ′ ⇒ ∆′, y : ϕ ⊃ ψ

• Finally, if r is a (Π2) rule, we need some care to avoid clashing of eigenvariables.
Suppose the last rule applied in d has premises of the form

{Qi1 , . . . , Qin ,Γ′ ⇒ ∆′, Pi1 , . . . , Pim}i=1,...,k

with fresh variables y′1, . . . , y′n in each Qij (eigenvariable condition). If y 6= y′h for
all h = 1, . . . , n, we use the inductive hypothesis and (Π2). Otherwise, suppose
that y = y′i for some i, then we first apply the inductive hypothesis, replacing y′i
with a fresh metavariable z. Then we use the inductive hypothesis to substitute x
with y and (Π2).

Lemma 11. The rules of weakening are hp-admissible in G3SI∗.

Proof. Let dp be the derivation of the premise of the weakening rule (let Z be either a
labelled formula or a relational atom):

...dp
Γ⇒ ∆ (w, l)
Z,Γ⇒ ∆

or
...dp

Γ⇒ ∆ (w, r)
Γ⇒ ∆, Z

84

By induction on |dp|. When dp ends in an axiom or the conclusion of (⊥, l), we are
done. Otherwise, consider the last inference rule r in dp.

• If r is any rule without eigenvariable condition, the claim follows by application of
the inductive hypothesis and r.

• If r is (⊃, r) or (Π2), we have to avoid a clash of the eigenvariable with the variable
in Z. For instance, consider the following situation:

...
x 6 y, y : ϕ,Γ⇒ ∆, y : ψ

(⊃, r)
Γ⇒ ∆, x : ϕ ⊃ ψ

(w, r)
Γ⇒ ∆, x : ϕ ⊃ ψ, y : χ

Then we first replace the eigenvariable with a fresh variable by Lemma 10. The
claim then follows by applications of the inductive hypothesis and r, e.g. in the
above situation:

...
x 6 z, z : ϕ,Γ⇒ ∆, y : χ, z : ψ

(⊃, r)
Γ⇒ ∆, x : ϕ ⊃ ψ, y : χ

Lemma 12. All rules of G3SI∗ are hp-invertible.

Proof. We show that each rule is hp-invertible:

• Consider first the rule (∧, l). We show that if d `G3SI∗ x : ϕ ∧ ψ,Γ ⇒ ∆ then one
can find d1 `G3SI∗ x : ϕ, x : ψ,Γ ⇒ ∆ such that |d1| ≤ |d|. By induction on |d|.
Consider the last inference rule r.

– If x : ϕ ∧ ψ is the principal formula of the rule r, we are done.
– Otherwise, x : ϕ ∧ ψ is not the principal formula. Then the claim follows by

applications of the inductive hypothesis and r.

The proof is analogous for the logical rules of (∧, r), (∨, l) and (∨, r).
• (⊃, l) and all (Π1)- and (Π2) rules are hp-invertible since their premise(s) can be

obtained by weakening from the conclusion which is hp-admissible (Lemma 11).
• For the rule (⊃, r) we show the following: if d `G3SI∗ Γ ⇒ ∆, x : ϕ ⊃ ψ then
d1 `G3SI∗ x 6 y, y : ϕ,Γ⇒ ∆, y : ψ such that |d1| ≤ |d|. We proceed by induction
on |d|. When Γ ⇒ ∆, x : ϕ ⊃ ψ is an axiom or the conclusion of (⊥, l), we are
done. Otherwise, consider the last inference rule r in d.

– If r is any logical rule and x : ϕ ⊃ ψ is not the principal formula, e.g.

...
Γ⇒ ∆, x : ϕ ⊃ ψ, v : α, v : β

(∨, r)
Γ⇒ ∆, x : ϕ ⊃ ψ, v : α ∨ β

85

The claim follows by applications of the inductive hypothesis and r:

...
x 6 y, y : ϕ,Γ⇒ ∆, v : α, v : β, y : ψ

(∨, r)
x 6 y, y : ϕ,Γ⇒ ∆, v : α ∨ β, y : ψ

– Else, let r be (⊃, r) and x : ϕ ⊃ ψ the principal formula. Then we are done
(we might first have to use Lemma 10 to obtain the desired variables).

To ensure hp-admissibility of contraction in the resulting systems, the following clo-
sure condition needs to be satisfied:

Definition 32 (Closure Condition [76, 134]). Given a system with (Π1)-rules, for every
rule schema of the form

Q,P1, . . . , Pi−1, Pi, Pi, Pi+1, . . . , Pm,Γ⇒ ∆

P1, . . . , Pi−1, Pi, Pi, Pi+1, . . . , Pm,Γ⇒ ∆

a rule schema
Q,P1, . . . , Pi−1, Pi, Pi+1, . . . , Pm,Γ⇒ ∆

P1, . . . , Pi−1, Pi, Pi+1, . . . , Pm,Γ⇒ ∆

has to be included in the system.

This condition is not problematic as the number of rule schemas that need to be
added to the system is finite.

Lemma 13. The rules of contraction are hp-admissible in G3SI∗ provided the closure
condition is satisfied.

Proof. Let dp be the derivation of the premise of the contraction rule (let Z be either a
labelled formula or a relational atom):

...dp
Z,Z,Γ⇒ ∆

(c, l)
Z,Γ⇒ ∆

or

...dp
Γ⇒ ∆, Z, Z

(c, r)
Γ⇒ ∆, Z

By induction on |dp|. When dp ends in an axiom or (⊥, l), then also the contracted
sequent is an axiom or the conclusion of (⊥, l). Otherwise, consider the last inference
rule r in dp. We have to distinguish two cases.

• If the contracted formula Z is not principal in r, both occurrences of Z are in the
premise(s) of r. The claim then follows by applications of the inductive hypothesis
and r.
• Else, Z is principal in r. Then we distinguish three cases:

(1) r is a rule where the contracted formula also occurs in the premise(s), e.g. a
(Π1) rule or (⊃, l). Consider the following case:

86

...
x 6 y, x : ϕ ⊃ ψ, x : ϕ ⊃ ψ,Γ⇒ ∆, y : ϕ

...
x 6 y, x : ϕ ⊃ ψ, x : ϕ ⊃ ψ, y : ψ,Γ⇒ ∆

(⊃, l)
x 6 y, x : ϕ ⊃ ψ, x : ϕ ⊃ ψ,Γ⇒ ∆

The claim follows by applications of the inductive hypothesis and r, i.e.:

...
x 6 y, x : ϕ ⊃ ψ,Γ⇒ ∆, y : ϕ

...
x 6 y, x : ϕ ⊃ ψ, y : ψ,Γ⇒ ∆

(⊃, l)
x 6 y, x : ϕ ⊃ ψ,Γ⇒ ∆

When both contracted formulas are principal in the rule (e.g. in (Π1) rules),
the claim holds by the closure condition (Definition 32).

(2) The premise(s) of r contains subformulas of the principal formula, i.e. for the
rules (∧, r), (∧, l), (∨, r) or (∨, l). Consider the case for (∧, l):

...
x : ϕ, x : ψ, x : ϕ ∧ ψ,Γ⇒ ∆

(∧, l)
x : ϕ ∧ ψ, x : ϕ ∧ ψ,Γ⇒ ∆

By hp-invertibility (Lemma 12) of (∧, l), we obtain

x : ϕ, x : ψ, x : ϕ, x : ψ,Γ⇒ ∆

The claim then follows by applications of the inductive hypothesis and (∧, l).
Analogous for the rules (∧, r), (∨, r) and (∨, l).

(3) The premise of r contains a subformula of the contracted formula and a new
relational atom x 6 y, i.e., r is (⊃, r):

...
x 6 y, y : ϕ,Γ⇒ ∆, y : ψ, x : ϕ ⊃ ψ

(⊃, r)
Γ⇒ ∆, x : ϕ ⊃ ψ, x : ϕ ⊃ ψ

As (⊃, r) is hp-invertible (Lemma 12), we obtain

x 6 y, x 6 y, y : ϕ, y : ϕ,Γ⇒ ∆, y : ψ, y : ψ

The claim then follows by applications of the inductive hypothesis and (⊃, r).

We now show the proofs for soundness and completeness for the calculi G3SI∗, which
are similar to those in [132].

Let FSI∗ = 〈W,6〉 be a frame with the properties of the accessibility relation ex-
pressed as (Π2 and Π1) formulas in ∗. Let L = {x, y, z . . . } be the labels occurring in
G3SI∗-derivations, w ∈ W . An interpretation Il of L in FSI∗ is a function Il : L → W ,
s.t. Il(x) = w and Il(6) =6.

87

Definition 33. Let MSI∗ = 〈FSI∗ ,〉 be a model and Il an interpretation. A labelled
sequent Γ⇒ ∆ is valid in MSI∗ if for every interpretation Il we have: if for all labelled
formulas x : ϕ and relational atoms y 6 z in Γ, Il(x) ϕ and Il(y) 6 Il(z) hold, then
for some w : ψ, u 6 v in ∆ we have Il(w) ψ or Il(u) 6 Il(v). A sequent Γ ⇒ ∆ is
valid in a frame FSI∗ when it is valid in every model MSI∗ . based on the frame FSI∗ .

Theorem 11 (Soundness). For any sequent Γ⇒ ∆,

if `G3SI∗ Γ⇒ ∆, then Γ⇒ ∆ is valid in every frame FSI∗.

Proof. Let d be the derivation of Γ⇒ ∆ in G3SI∗. By induction on |d|. If Γ⇒ ∆ is an
axiom, there is either a labelled atom x : p or a relational atom x 6 y in both, Γ and ∆,
and we are done. Similarly, if Γ⇒ ∆ is the conclusion of (⊥, l). Otherwise, consider the
last inference rule r in d.

• Let r be any logical rule except (⊃, r), e.g. (∧, l):

...
x : ϕ, x : ψ,Γ′ ⇒ ∆

(∧, l)
x : ϕ ∧ ψ,Γ′ ⇒ ∆

By inductive hypothesis, we have the validity of the sequent x : ϕ, x : ψ,Γ′ ⇒ ∆.
Since x ϕ and x ϕ iff x ϕ ∧ ψ, the conclusion is also valid. Analogous for
the other logical rules.
• If r is (⊃, r), consider the following situation (note that y is an eigenvariable):

...
x 6 y, y : ϕ,Γ⇒ ∆′, y : ψ

(⊃, r)
Γ⇒ ∆′, x : ϕ ⊃ ψ

Let Il be an interpretation that makes all the formulas in Γ true. Let z be arbitrary
s.t. Il(x) 6 z. By inductive hypothesis, we have validity of the premise. We show
that either x : ϕ ⊃ ψ or a formula in ∆′ is valid. Let I ′l be an interpretation
identical to Il except for y, where I ′l(y) is assigned the value z. Since I ′l validates
the antecedent of the premise, it also validates either a formula in ∆′ (and hence,
also Il validates a formula in ∆′) or y : ψ (then, since z was arbitrary, Il validates
x : ϕ ⊃ ψ).

• If r is a (Π1) rule (no eigenvariable condition), by inductive hypothesis we have
validity of the premise. As the conclusion is contained in the premise, we also have
validity of the conclusion.

• Finally, if r is a (Π2) rule with eigenvariable condition, we have premise(s) of the
form

{Qi,Γ⇒ ∆, Pi}i=1...k

where Qi are sets of relational atoms containing eigenvariables. E.g., consider the
rule for LQ with w an eigenvariable:

88

...
Γ⇒ ∆, x 6 y

...
Γ⇒ ∆, x 6 z

...
y 6 w, z 6 w,Γ⇒ ∆

(Π2)
Γ⇒ ∆

Let Il be an interpretation that validates all the formulas in the antecedent of
the premise(s). Let w′ be arbitrary s.t. Il(y) 6 w′, Il(z) 6 w′ (the Qi from the
premise(s)). By inductive hypothesis, we have validity of the premise(s). Let I ′l be
an interpretation identical to Il except on w where I ′l(w) is assigned the value w′.
Since I ′l validates the antecedent of the premise, it also validates a formula in ∆
(and hence, also Il validates a formula in ∆).

To prove completeness, we use a direct method that shows how root-first proof search
in the sequent system either gives a proof or leads to the construction of a counter model.

Theorem 12 (Completeness). For any sequent Γ⇒ ∆

If Γ⇒ ∆ is valid in every frame FSI∗, then `G3SI∗ Γ⇒ ∆.

Proof. We show that each sequent Γ⇒ ∆ is either derivable in G3SI∗ or it has a counter-
model in a frame with properties expressed by formulas in ∗, i.e. a model that makes all
labelled formulas and relational atoms in Γ true and all labelled formulas and relational
atoms in ∆ false.

We first construct in the usual manner a derivation tree for Γ ⇒ ∆ by applying
the rules of G3SI∗ root first. If the derivation tree is finite, i.e., all leaves are axioms
or conclusions of (⊥, l), we have a proof in G3SI∗. Assume that the derivation tree is
infinite. By König’s lemma, it has an infinite branch that is used to build the needed
counterexample. The derivation tree is constructed inductively in stages following [132]:
Stage 0 has Γ ⇒ ∆ at the root of the tree. Stage s > 0 has two cases: (1) If every
topmost sequent is an axiom or conclusion of a zero-premise rule, the construction ends.
(2) Otherwise, we continue constructing the tree by applying to the topmost sequents
root-first the rules of G3SI∗ in a particular order: There are 6 + p different stages, 6 for
the rules of G3I and p for the (Π1)- and (Π2)-rules. The stages are then repeated, i.e.,
s = 6 + p+ 1 is stage 1, etc.

• Stage s = 1 with (∧, l): Let x1 : ϕ1 ∧ ψ1, . . . , xm : ϕm ∧ ψm be all formulas in
Γ having ∧ as outermost connective. We add above any topmost sequent of the
form x1 : ϕ1 ∧ ψ1, . . . , xm : ϕm ∧ ψm,Γ′ ⇒ ∆, a sequent x1 : ϕ1, x1 : ψ1, . . . , xm :
ϕm, xm : ψm,Γ

′ ⇒ ∆. This corresponds to applying the rule (∧, l) m times root
first.
• Stage s = 2 with (∨, r): Analogous to stage s = 1.
• Stage s = 3 with (∧, r): Let x1 : ϕ1 ∧ ψ1, . . . , xm : ϕm ∧ ψm be all formulas in

topmost ∆ having ∧ as outermost connective. We add above any of such sequents
2m sequents of the form Γ⇒ ∆′, x1 : χ1, . . . , xm : χm where χi can be either ϕi or
ψi.

89

• Stage s = 4 with (∨, l): Analogous to stage s = 3.
• Stage s = 5 with (⊃, l): We add above any topmost sequent of the form x1 6
y1, x1 : ϕ1 ⊃ ψ1, . . . , xm 6 ym, xm : ϕm ⊃ ψm,Γ

′ ⇒ ∆ 2m sequents of the form
x1 6 y1, x1 : ϕ1 ⊃ ψ1, . . . , xm 6 ym, xm : ϕm ⊃ ψm, yi1 : ψi1 , . . . , yih : ψih ,Γ

′ ⇒
∆, yj1 : ϕj1 , . . . , yjk : ϕjk where i1, . . . , ih ∈ {1, . . . ,m} and j1, . . . , jk ∈ {1, . . . ,m}\
{i1, . . . , ih}. This corresponds to applying the rule (⊃, l) m times root first.
• Stage s = 6 with (⊃, r): Let x1 : ϕ1 ⊃ ψ1, . . . , xm : ϕm ⊃ ψm be all formulas in

topmost ∆ having ⊃ as outermost connective. We add above any of such sequents
a sequent x1 6 y1, . . . , xm 6 ym, y1 : ϕ1, . . . , ym : ϕm,Γ⇒ ∆′, y1 : ψ1, . . . , ym : ψm
with y1, . . . , ym fresh variables.
• Stage s = 6 + j with (Π1): We add above any topmost sequent of the form
P1, . . . , Pm,Γ

′ ⇒ ∆ a sequent Q1, . . . , Qn, P1, . . . , Pm,Γ⇒ ∆.
• Stage s = 6 + j with (Π2): We add above any topmost sequent k sequents of the

form {Qi1 , . . . , Qin ,Γ⇒ ∆, Pi1 , . . . , Pim}, for i = 1, . . . , k and with y1, . . . , yn fresh
variables.

For any s, if the sequent is neither an axiom, nor (⊥, l) and none of the stages apply, we
write the sequent itself above it.

If the derivation tree is infinite, it has an infinite branch. Now let Γ ⇒ ∆ = Γ0 ⇒
∆0,Γ1 ⇒ ∆1, . . . ,Γi ⇒ ∆i, . . . be one such branch. Consider the sets Γ ≡ ⋃

Γi and
∆ ≡ ⋃

∆i for i ≥ 0. We now construct a countermodel, i.e. a model that makes all
labelled formulas and relational atoms in Γ true and all labelled formulas and relational
atoms in ∆ false. Let FSI∗ be a frame whose elements are all the labels occurring in
Γ,∆. The interpretation Il on FSI∗ , the relation 6 of FSI∗ and the relation are defined
as follows:

(i) for all x : p in Γ it holds that Il(x) p in FSI∗ ,
(ii) for all x 6 y in Γ we have Il(x) 6 Il(y) in FSI∗ ,
(iii) for all x′ : p′ in ∆ we have Il(x′) 1 p′ in FSI∗ , and finally
(iv) for all x′ 6 y′ in ∆ it holds that Il(x′)
 Il(y′) in FSI∗ .

FSI∗ is well defined as it is not the case that either x 6 y is in Γi and x 6 y is in ∆j or
x 6 y, x : p is in Γi and y : p is in ∆j (for any i and j), as otherwise we would have an
axiom and therefore the branch would be finite, against the hypothesis. We then show
that for any formula ϕ, ϕ is forced at Il(x) if x : ϕ is in Γ and ϕ is not forced at Il(x) if
x : ϕ is in ∆. As all relational atoms in Γ are true and those in ∆ are false by definition
of FSI∗ we have a countermodel to Γ⇒ ∆. We proceed by induction on |ϕ|.

• If ϕ is ⊥, it cannot be in Γ because no sequent in the branch contains x : ⊥ in the
antecedent, so it is not forced at any node of the model. If ϕ is an atom p in Γ
then Il(x) p by definition; and Il(x) 1 p if it is in ∆.
• If x : ϕ ≡ x : ϕ1 ∧ ϕ2 is in Γ, there exists i such that x : ϕ1 ∧ ϕ2 appears

first in Γi, and therefore, for some j ≥ 0, x : ϕ1 and x : ϕ2 are in Γi+j . By
inductive hypothesis, x ϕ1 and x ϕ2 and therefore x ϕ1 ∧ ϕ2 (analogous for
x : ϕ ≡ x : ϕ1 ∨ ϕ2 in ∆).

90

• If x : ϕ ≡ x : ϕ1 ∧ ϕ2 is in ∆ then either x : ϕ1 or x : ϕ2 is in ∆. By inductive
hypothesis, x 1 ϕ1 or x 1 ϕ2 and therefore x 1 ϕ1 ∧ ϕ2 (analogous for x : ϕ ≡ x :
ϕ1 ∨ ϕ2 in Γ).

• If x : ϕ ≡ x : ϕ1 ⊃ ϕ2 is in Γ, we consider all the relational atoms x 6 y that occur
in Γ. If there is no such atom then x ϕ1 ⊃ ϕ2 is in the model. Else, for any
occurrence of x 6 y in Γ, by construction of the tree either y : ϕ1 is in ∆ or y : ϕ2

is in Γ. By inductive hypothesis y 1 ϕ1 or y ϕ2, and since this holds for all y
with x 6 y we have x ϕ1 ⊃ ϕ2 in the model.
• If x : ϕ ≡ x : ϕ1 ⊃ ϕ2 is in ∆, due to one of the following steps of the derivation

tree we have that x 6 y and y : ϕ1 are in Γ, whereas y : ϕ2 is in ∆. By inductive
hypothesis this gives x 6 y and y ϕ1 but y 1 ϕ2, i.e. x 1 ϕ1 ⊃ ϕ2.

Corollary 4. For any sequent Γ⇒ ∆, `G3SI∗ Γ⇒ ∆ iff Γ⇒ ∆ is valid in every frame
FSI∗.

Theorem 13 (Cut elimination). The cut rule

Γ⇒ ∆, Z Z,Γ′ ⇒ ∆

Γ,Γ′ ⇒ ∆′,∆
(cut)

where Z is either a labelled formula y : ϕ or a relational atom x 6 y, can be eliminated
from G3SI∗-derivations.

Proof. We distinguish two cases according to the cut formula Z.
When Z is a labelled formula y : ϕ, we proceed by a double induction on the com-

plexity of Z and the sum of the derivation heights of the premises of the cut.
In the base case, i.e. one or both of the derivations end in an axiom or are the

conclusion of (⊥, l), we are done. The only interesting case is when the cut formula Z is
y : p and both premises are axioms, e.g.:

x 6 y, x : p,Γ⇒ ∆, y : p y 6 z, y : p,Γ′ ⇒ ∆′, z : p
(cut)

x 6 y, y 6 z, x : p,Γ′,Γ⇒ ∆,∆′, z : p

Then we replace (cut) by an application of (trans) to the axiom

x 6 y, y 6 z, x 6 z, x : p,Γ′,Γ⇒ ∆,∆′, z : p

Otherwise, let rl (rr) be the last rule applied in the derivation of the left (right)
premise, i.e., the premise having the cut formula y : ϕ on the left (right).

• If the cut formula is the principal formula of a logical rule in any or both of the
premises, we apply invertibility of the logical rules (Lemma 12) and replace the cut
by smaller ones (note that for the case of Z = y : ϕ1 ⊃ ϕ2, we also need to apply
Lemma 10 to avoid a clash of variables).

91

• Else, the claim follows by applications of the inductive hypothesis and rl (rr). Note
that when permuting a cut with a rule with eigenvariable condition (i.e., (Π2) or
(⊃, r)), we also have to use appropriate substitutions to avoid a clash of variables
(Lemma 10).

When Z is a relational atom x 6 y, the proof proceeds by induction on the derivation
height of the right premise of the cut, i.e., Γ⇒ ∆, x 6 y.

In the base case, i.e. the derivation ends in an axiom or as conclusion of (⊥, l), we
have either

(i) u 6 v, u : p,Γ′′ ⇒ ∆′′, v : p, x 6 y
(ii) u 6 v,Γ′′ ⇒ ∆′′, u 6 v, x 6 y

(iii) u : ⊥,Γ′′ ⇒ ∆′′, x 6 y or
(iv) x 6 y,Γ′′ ⇒ ∆′′, x 6 y

If (i)–(iii), the conclusion of (cut) is also an axiom. Otherwise, if (iv), the conclusion
of (cut) can be obtained by weakening (Lemma 11).

Otherwise, let rr be the last rule applied in the derivation of the right premise, i.e.,
the premise having the cut formula x 6 y on the right. We show that the cut can then be
shifted over the premise(s) of rr. The main observation is that x 6 y is not affected by
the application of rr since the rules of G3SI∗ do not change relational atoms appearing
on the right hand side of its conclusion.

• If rr is a rule other than (⊃, r) or (Π2), the claim follows by applications of the
inductive hypothesis and rr. For instance, let rr be (Π1). Then the derivation

...
Q1, . . . , Qm, P1, . . . , Pn,Γ

′′ ⇒ ∆′′, x 6 y
(Π1)

P1, . . . , Pn,Γ
′′ ⇒ ∆′′, x 6 y

...
x 6 y,Γ′ ⇒ ∆′

(cut)
P1, . . . , Pn,Γ

′,Γ′′ ⇒ ∆′,∆′′

is transformed into

...
Q1, . . . , Qm, P1, . . . , Pn,Γ

′′ ⇒ ∆′′, x 6 y

...
x 6 y,Γ′ ⇒ ∆′

(cut)
Q1, . . . , Qm, P1, . . . , Pn,Γ

′,Γ′′ ⇒ ∆′,∆′′
(Π1)

P1, . . . , Pn,Γ
′,Γ′′ ⇒ ∆′,∆′′

• If rr is (⊃, r) or a rule following the (Π2) scheme, the claim follows by applications
of the inductive hypothesis, weakenings and rr. Note that we first have to replace
the eigenvariables in the premise(s) of rr (Lemma 10) and then permute cut and
rr.

92

5.4.1 Tool: Framinator

The tool Framinator (FRAMe condItioNs Automatically TO Rules) implements the
algorithm introduced in Section 5.4. It takes as input frame conditions in the language
of first-order classical logic and, if possible, transforms it into equivalent labelled sequent
rules.

Framinator can be used to construct cut-free calculi for many intermediate logics,
such as Gödel logic [91], the logics of Kripke models with k worlds Bck [49] or the logics
of Kripke models with width ≤ k Bwk [49]. It is available at

www.logic.at/tinc/webframinator/

Example

In the main screen of Framinator (see Figure 5.1) the user can enter the frame condition
in the text field.

Figure 5.1: Main screen of Framinator

After the computation, a dialog box containing the results pops up, see Figure 5.2.
The output contains the class of the frame conditions in the hierarchy, the computed
rules in text format, as well as a link to the generated paper containing the obtained
calculus along with a basic description of the system.

On the command-line, the program is started by typing compute. A prompt tells
the user that he can enter the frame condition. The formula must have the form
(prefix) : (matrix), the quantifiers in the prefix are written A (for ∀) and E (for
∃) and the accessibility relation ≤ is abbreviated with the symbol <. While the class of
the frame conditions and the corresponding rules are printed on the screen, the LATEX-file
is saved in a program folder on the computer. Note that in the text representation of
the rule, G and D stand for multisets of formulas Γ and ∆.

In this example, we want to generate the rule equivalent to the frame condition
∀x, y, z((x 6 y&x 6 z)→ ∃w(y 6 w&z 6 w)) for Jankov logic LQ.

93

www.logic.at/tinc/webframinator/

Figure 5.2: Dialog box containing the results

?- compute.
|: (’A’ x ’A’ y ’A’ z ’E’ w):((x<y & x<z) -> (y<w & z<w)).

The frame condition is in the class: [p(2)]

Equivalent Labelled Rule(s):

G => D,x<y G => D,x<z y<w,z<w,G => D

G => D

Implementation Details

Framinator is implemented in Prolog. The implementation consists of 10 files and roughly
1000 lines of code (including documentation) and follows the general TINC-structure
described in Chapter 3 (recall Figure 3.5). The specific instantiation for Framinator is
depicted in Figure 5.3.

Input and checkInput. As described in the general section, the first component,
checkInput, takes as input a frame condition and checks whether it has the correct
form to be handled by the transformation procedure. This is implemented by using a
definite clause grammar (frames2tex).

Moreover, the input formula is required to be in prenex normal form where the prefix
is separated from the matrix by an ‘:’, i.e. (prefix) : (matrix). Note that the prefix
and the matrix have to be enclosed in brackets (). The syntax of the input formula
consists of:

• the letters [a-z] except v for variables,
• the symbol < denoting the accessibility relation ≤,

94

Figure 5.3: Design of Framinator

• logical connectives: & (and), v (or), -> (implication) and - (negation),
• quantifiers: A (universal quantifier) and E (existential quantifier).

Each formula should be closed, i.e. no free variables should occur in the matrix. More-
over, the user can concatenate several frame conditions by separating them with a semi-
colon ‘;’. In the method isCorrectFormula, we check whether the input formula satisfies
all these syntactic criteria.

computeRules. The second component, computeRules, contains the implemen-
tation of the algorithm:

• isClasses identifies the classes of the frame conditions given as input within the
hierarchy of Definition 31 and indicates them as s(i) for Σi or p(i) for Πi. Note
that for the computation of the class, only the prefix of the formula needs to be
considered since the hierarchy depends on the alternation of the quantifiers. See
Code Example 4 below for the implementation of the class check.

• If the (highest) class of the frame conditions is within Π2, frames2rules transforms
the frame conditios into equivalent labelled sequent rules.

Code Example 4. isClasses first determines if there is more than one frame condition
given as input. For every frame condition, we determine the class of the input formula
with isClass(Prefix,Class) and then use checkClasses(Class,OK) to see whether we
can apply our algorithm (OK is the result of the check). We show (parts of) the code to
determine whether the input formula is within a class ΠN (the formula might also be
within a class ΣN , but we omit these parts):

%%% isClasses(+Formula, -Class)
%% + ... parameter given as input, - ... return value
%% compute the classes of the (possibly concatenated) frame
%% conditions based on the quantifier alternation in the prefix

95

%% Formula ... input formula
%% Class ... Class of the formula: Pi_N: p(N) or Sigma_N: s(N)
isClasses(X ’;’ Y, Class) :- % if two formulas are concatenated

X = Prefix ’:’ _, % we only need the prefix of a formula
isClass(Prefix, C1), % and check the class level
isClasses(Y, C2), % same is done for the second formula
append([C1], C2, Class).

isClasses(X, Class) :- % if there is only one formula
X = Prefix ’:’ _, % we only need to consider this prefix
isClass(Prefix, C1), % and determine the class
Class = [C1].

%%% isClass(+Prefix, -Class)
%%% compute the class of the frame condition based on
%%% the quantifier alternation in the prefix
%%% +Prefix ... prefix of the input formula
%%% -Class ... Class of the formula: Pi_N: p(N) or Sigma_N: s(N)
isClass(Prefix, Class) :-

Prefix = ’A’ _, % if the prefix starts with A
isPiClass(Prefix, 0, N), % then the formula is in Pi
Class = p(N).

isClass(Prefix, Class) :-
Prefix = ’E’ _, % if the prefix starts with E
isSigmaClass(Prefix, 0, N), % then the formula is in Sigma
Class = s(N).

%%% isPiClass(+Prefix, +Class, -ClassNew)
%%% compute the class level
%%% +Prefix ... prefix of the input formula
%%% +Class ... Class of the formula: Pi_N: p(N) or Sigma_N: s(N)
%%% -ClassNew ... final class of the formula
isPiClass(Prefix, P0, P0) :-

% if the formula is a formula in pi, the class remains the same
isPiFormula(Prefix, P0).

isPiClass(Prefix, P0, P2) :-
% the if formula is NOT a formula in pi, level has to be increased
\+ isPiFormula(Prefix, P0),
P1 is P0+1,
isPiClass(Prefix, P1, P2).

%%% isPiFormula(+Prefix, -Level)
%%% computes the class level
%%% +Prefix ... quantifier part of the input formula

96

%%% -Level ... Class level based on the quantifier alternation
isPiFormula(F, 0) :-

atomic(F). % if F is atomic, level = 0
isPiFormula(’A’ F, 1) :-

atomic(F). % if F only contains one quantifier A, level = 1
isPiFormula(’A’ X ’A’ F, P1) :-

atomic(X), % if X is just a variable
P1 > 0, % and the old level > 0
isPiFormula(’A’ F, P1). % then we only need to check level of F

isPiFormula(’A’ X ’E’ F, P1) :-
atomic(X), % if X is just a variable
P1 > 0, % and the old level > 0
P is P1-1, % we decreise the old level and check
isSigmaFormula(’E’ F, P). % the level of the "sigma formula"

%%% checkClasses(+Class, -OK)
%%% recursively checks if the classes of all frame conditions can be
%%% handled by our algorithm (i.e., if they are in s(1), p(1) or p(2)
%%% +Class ... List of classes of the various frame conditions
%%% -OK ... 1 if all classes are within p(2), 0 if not
checkClasses([], 1).
checkClasses([H|T], OK) :- % we take the first list element H

% and check if it is equivalent to s(1), p(1) or p(2)
member(H, [s(1), p(1), p(2)]),

% if yes, we check the other list elements
checkClasses(T, OK).

checkClasses([H|_], OK) :-
% if the first list element is not within p(2)
\+ member(H, [s(1), p(1), p(2)]),

% we stop and set OK = 0
OK = 0.

Output and printOutput. The last component, printOutput, contains the method
to print the generated rules on the command-line or web interface (printRules); more-
over, the method texOut generates a LATEX-paper containing the resulting cut-free la-
belled sequent calculus.

97

CHAPTER 6
Paraconsistent Logics

Paraconsistent logics are logics which are not trivialized in the presence of inconsistency.
This means that there are some formulas ψ,ϕ, such that ψ,¬ψ 6` ϕ. As paraconsistent
logics do not “explode” in presence of contradictions, they are widely used as tool to han-
dle inconsistencies in many areas of computer science [36, 98, 156, 108], e.g. in software
engineering, or when merging information from several agents or multiple sources. Para-
consistent logics are usually introduced Hilbert-style by extending the positive fragment
of propositional classical logic Cl+ with suitable axioms.

In this chapter, we describe a procedure to introduce calculi and semantics for a
large class of paraconsistent logics automatically. In the first step of our method, we
transform the Hilbert axioms describing the paraconsistent logic into equivalent sequent
rules, hence generating a sequent calculus for it. In the second step, we extract semantics
out of the sequent calculus using the framework of partial non-deterministic matrices
(PNmatrices) [23]. The semantics allows us to reason about important properties, e.g.
decidability of the logic or analyticity of the calculus. We also present the implementation
of this procedure for a particular case in the TINC-tool Paralyzer.

We first settle the basic notions and then present some examples of propositional para-
consistent logics, as well as related work in proof theory regarding the (semi-)automated
introduction of analytic calculi for these logics. The following sections contain our the-
oretical contributions: In Section 6.4, we introduce the first step of our systematic pro-
cedure to automatically generate a sequent calculus. The second step of our procedure,
i.e. extracting a partial non-deterministic matrix from the obtained calculus, is described
in Section 6.5. We also explain how the semantics can be used to investigate the logic
and the generated calculus, by showing that the PNmatrix induces a decision procedure
for the corresponding logic, and allows to reason about the analyticity of the calculus.
Section 6.6 contains a refinement of the general results for a specific subclass, for which
the semantics extracted from the calculi is simpler and allows a better characterization
of the analyticity property. Our TINC-tool Paralyzer is described in Section 6.6.1.

This chapter is based on the publications [55, 56].

99

6.1 Preliminaries

Syntax

The language L+
cl of the considered logics is that of the positive fragment of propositional

classical logic extended with finitely many unary connectives. Recall that L+
cl consists

of infinitely many (possibly indexed) propositional variables p, q, . . ., the connectives ∧
(conjunction), ∨ (disjunction) and ⊃ (implication). As usual, formulas are built from
atoms using the logical connectives. (Metavariables for) Formulas are denoted by (pos-
sibly indexed) ϕ,ψ, α, β, . . . and (metavariables of) multisets of formulas are written as
Γ,∆,

We identify a language with its set of formulas, e.g. we write ϕ ∈ L. UL denotes
the set of unary connectives of L, whereas U∗L denotes the set of all finite sequences of
connectives from UL with the empty sequence denoted by ε and ?̄, .̄ for arbitrary such
finite sequences. We also employ standard notations for their concatenation (e.g., when
writing expressions like ?̄.̄).

Let HCL+ be a Hilbert system for Cl+, e.g.:

(Schematic) Axioms

(A1) ϕ ⊃ (ψ ⊃ ϕ)
(A2) (ϕ ⊃ (ψ ⊃ χ)) ⊃ ((ϕ ⊃ ψ) ⊃ (ϕ ⊃ χ))
(A3) ϕ ∧ ψ ⊃ ϕ
(A4) ϕ ∧ ψ ⊃ ψ
(A5) ϕ ⊃ (ψ ⊃ ϕ ∧ ψ)
(A6) ϕ ⊃ ϕ ∨ ψ
(A7) ψ ⊃ ϕ ∨ ψ
(A8) (ϕ ⊃ χ) ⊃ ((ψ ⊃ χ) ⊃ (ϕ ∨ ψ ⊃ χ))
(A9) ((ψ ⊃ ϕ) ⊃ ψ) ⊃ ψ

Inference rules

• modus ponens (MP): for given formulas ϕ and ϕ ⊃ ψ, we obtain ψ;
ϕ ϕ ⊃ ψ

ψ

In this chapter we use a label-based formulation of ordinary Gentzen sequent calculi
to simplify the presentation of our results:

Definition 34. Let L be a propositional language.

1. A labelled L-formula has the form b : ψ, where b ∈ {f, t} and ψ is an L-formula.
2. An L-sequent is a finite set of labelled L-formulas. The usual sequent notation

ψ1, . . . , ψn ⇒ ϕ1, . . . , ϕm

corresponds to the set of labelled formulas

{f : ψ1, . . . , f : ψn, t : ϕ1, . . . , t : ϕm}

100

(id) ∅/{f : p1, t : p1} (cut) {{f : p1}, {t : p1}}/∅
(f : W) {∅}/{f : p1} (t : W) {∅}/{t : p1}
(f : ∧) {{f : p1, f : p2}}/{f : p1 ∧ p2} (t : ∧) {{t : p1}, {t : p2}}/{t : p1 ∧ p2}
(f : ∨) {{f : p1}, {f : p2}}/{f : p1 ∨ p2} (t : ∨) {{t : p1, t : p2}}/{t : p1 ∨ p2}
(f :⊃) {{t : p1}, {f : p2}}/{f : p1 ⊃ p2} (t :⊃) {{f : p1, t : p2}}/{t : p1 ⊃ p2}

Table 6.1: Label-based sequent calculus LK+

3. An L-substitution is a function σ : L → L, such that

σ(♥(ψ1, . . . , ψn)) = ♥(σ(ψ1), . . . , σ(ψn))

for every n-ary connective ♥ of L. L-substitutions are naturally extended to la-
belled L-formulas, L-sequents, and sets of L-sequents.

4. An L-rule is an expression of the form Q/s, where Q is a finite set of L-sequents
(called premises) and s is an L-sequent (called conclusion). An application of an
L-rule Q/s is any inference step inferring the L-sequent σ(s) ∪ c from the set of
L-sequents {σ(q)∪ c | q ∈ Q}, where σ is an L-substitution, and c is an L-sequent.

5. A label-based sequent calculus G for L consists of a finite set of L-rules. We write
S `G s whenever the L-sequent s is derivable from the set S of L-sequents in G.

Example 23. Examples of rules and their applications (in standard sequent notation)
are:

(f : ¬¬) {{f : p1}}/{f : ¬¬p1}
Γ, ϕ⇒ ∆

Γ,¬¬ϕ⇒ ∆

(t : ¬¬¬) {{t : ¬p1}}/{t : ¬¬¬p1}
Γ⇒ ¬ϕ,∆

Γ⇒ ¬¬¬ϕ,∆

(t : ¬¬∧) {{t : ¬¬p1}, {t : ¬¬p2}}/{t : ¬¬(p1 ∧ p2)}
Γ⇒ ¬¬ϕ,∆ Γ⇒ ¬¬ψ,∆

Γ⇒ ¬¬(ϕ ∧ ψ),∆

The sequent calculus LK+ for Cl+ is the standard calculus LK without the rules for
negation and ⊥. Its label-based formulation is presented in Table 6.1. Note that LK+ is
equivalent (in the sense of Definition 7) to HCL+.

Let H be a Hilbert system and G be a sequent calculus. We denote by H ∪ {ϕ}
(H \ {ϕ} resp.) the Hilbert system obtained from H by adding (removing) the axiom ϕ,
and by G ∪R the sequent calculus extending G with the set R of L-rules. Moreover, we
define the equivalence of rules with respect to a sequent calculus:

Definition 35. Let R and R′ be two finite sets of L-rules, and G be a sequent calculus
for L. R and R′ are equivalent in G if Q `G∪R′ s for every Q/s ∈ R, and Q′ `G∪R s′ for
every Q′/s′ ∈ R′.

101

The definition of equivalence between rules for label-based sequent calculi can also
be reformulated by considering rule applications:

Proposition 2. Let R and R′ be two finite sets of L-rules, and G be a sequent calculus
for L. R and R′ are equivalent in G iff the following hold for every L-sequent c and
substitution σ: σ(Q)∪ c `G∪R′ σ(s)∪ c for every Q/s ∈ R, and σ(Q′)∪ c `G∪R σ(s′)∪ c
for every Q′/s′ ∈ R′.

Proof. “⇒”: Suppose that R and R′ are equivalent in G. Let σ be a substitution and c
an L-sequent. For every Q/s ∈ R, by the equivalence of R and R′, Q `G∪R′ s. Since
{σ(q) ∪ c | q ∈ Q} `G∪R σ(s) ∪ c, it holds that {σ(q) ∪ c | q ∈ Q} `G∪R′ σ(s) ∪ c.
Analogously, for every Q′/s′ ∈ R′, it holds that {σ(q′) ∪ c | q′ ∈ Q′} `G∪R σ(s′) ∪ c.

“⇐”: Follows by taking σ to be identity and c = ∅.

Definition 36. An L+
cl-rule Q/s is invertible in LK+ if s `LK+ q for every q ∈ Q.

All the logical rules of LK+, i.e. the rules for the connectives ∧,∨ and ⊃, are invertible
in LK+.

Semantics

The semantic framework that we use in this chapter is that of partial non-deterministic
matrices (PNmatrices) [23]. PNmatrices are a natural generalization of ordinary multi-
valued logical matrices, in which connectives can have non-deterministic and partial
interpretations. This means that truth values assigned to compound formulas can be
chosen non-deterministically out of a given, possibly empty1, set of options.

Definition 37 ([23]). A partial non-deterministic matrix (PNmatrix)M for a proposi-
tional language L consists of:

• A set VM of truth values,
• a subset DM ⊆ VM of designated truth values, and
• a truth table ♥M : VMn → P (VM) for every n-ary connective ♥ of L.

Definition 38 ([23]). LetM be a PNmatrix for L.

• An M-valuation for L is a function v : L → VM that respects the truth tables
ofM, i.e. v(♥(ϕ1, . . . , ϕn)) ∈ ♥M(v(ϕ1), . . . , v(ϕn)) for every compound formula
♥(ϕ1, . . . , ϕn) ∈ L.
• AnM-valuation v for L satisfies (with respect toM):

– an L-formula ϕ (denoted by v |=M ϕ) if v(ϕ) ∈ DM;
– a finite set Γ of L-formulas (denoted by v |=M Γ) if v |=M ϕ for every ϕ ∈ Γ;
– an L-sequent s (denoted by v |=M s) if either v |=M ϕ for some t : ϕ ∈ s, or
v 6|=M ϕ for some f : ϕ ∈ s.

1The possibility of having empty sets in the matrices make PNmatrices a generalization of non-
deterministic matrices (Nmatrices) [19, 20, 15].

102

• Given a set Γ of L-formulas and a single L-formula ϕ, Γ `M ϕ if for every M-
valuation v for L: v |=M ϕ whenever v |=M Γ.

• Given an L-sequent s, `M s if v |=M s for everyM-valuation v for L.

Note that every ordinary matrix can be identified with a PNmatrix. All truth tables
of the PNmatrix contain only singletons, see e.g. the following example.

Example 24. The PNmatrixMCl+ for the positive fragment of classical logic is defined
as follows:

• The set of truth values VMCl+
= {f, t},

• the set of designated truth values DMCl+
= {t}, and

• truth tables for every connective � ∈ {∧,∨,⊃}. ∧MCl+
, ∨MCl+

, and ⊃MCl+
are

defined according to the classical truth tables where singletons are used instead of
values, e.g. ∧MCl+

(t, f) = {f}.

Note that MCl+ is sound and complete for HCL+ (i.e. Γ `HCL+ ϕ iff Γ `MCl+
ϕ), as

well as for LK+ (i.e. `LK+ s iff `MCl+
s) [12].

PNmatrices can be used to provide a decision procedure for the logics they charac-
terize, see the following result established in [23]:

Proposition 3. Let M be a finite PNmatrix for a propositional language L. Given an
L-sequent s, the question whether `M s is decidable. Similarly, given a finite set Γ∪{ϕ}
of L-formulas, the question whether Γ `M ϕ is decidable.

Examples of Paraconsistent Logics

Logics of Formal Inconsistency

The Logics of Formal Inconsistency (LFIs) [63, 47, 45] are one of the most important
classes of paraconsistent logics. A well-known subclass is the family of C-systems [63, 47,
45, 13, 18], where the notion of consistency is internalized in the object language by a
unary consistency operator ◦. ◦ϕ has the intuitive meaning that “ϕ is consistent”. Below
we will present the definitions of some LFIs (and in particular, C-systems) which are
described by Hilbert systems extending the positive fragment of classical propositional
logic with axioms of Table 6.2.

Logic Axiomatization∗ Remark

B,
mbC

Cl++(n1) + (b) B is the basic paraconsistent logic.
It is called mbC in [47, 45].

BK B +(k) BK is also considered a basic para-
consistent logic [16, 17, 18].

bC B+(c) bC is the basic logic considered in
[47].

103

(n1) ϕ ∨ ¬ϕ (n2) ϕ ⊃ (¬ϕ ⊃ ψ) (k) ◦ϕ ∨ (ϕ ∧ ¬ϕ)
(r�) ◦(ϕ � ψ) ⊃ (◦ϕ ∨ ◦ψ) (b) ϕ ⊃ (¬ϕ ⊃ (◦ϕ ⊃ ψ)) (o1

�) ◦ϕ ⊃ ◦(ϕ � ψ)
(o2
�) ◦ψ ⊃ ◦(ϕ � ψ) (i) ¬ ◦ ϕ ⊃ (ϕ ∧ ¬ϕ) (c) ¬¬ϕ ⊃ ϕ

(a¬) ◦ϕ ⊃ ◦¬ϕ (a�) (◦ϕ ∧ ◦ψ) ⊃ ◦(ϕ � ψ) (e) ϕ ⊃ ¬¬ϕ
(ol⊃) ¬(ϕ ⊃ ψ) ⊃ (ϕ ∧ ¬ψ) (or⊃) (ϕ ∧ ¬ψ) ⊃ ¬(ϕ ⊃ ψ) (l) ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ
(or∧) (¬ϕ ∨ ¬ψ) ⊃ ¬(ϕ ∧ ψ) (ol∧) ¬(ϕ ∧ ψ) ⊃ (¬ϕ ∨ ¬ψ) (d) ¬(¬ϕ ∧ ϕ) ⊃ ◦ϕ
(ol∨) ¬(ϕ ∨ ψ) ⊃ (¬ϕ ∧ ¬ψ) (or∨) (¬ϕ ∧ ¬ψ) ⊃ ¬(ϕ ∨ ψ)
(il∧) ¬ ◦ (ϕ ∧ ψ) ⊃ (¬ ◦ ϕ ∧ ψ) ∨ (¬ ◦ ψ ∧ ϕ))
(ir∧) (¬ ◦ ϕ ∧ ψ) ∨ (¬ ◦ ψ ∧ ϕ)) ⊃ ¬ ◦ (ϕ ∧ ψ)
(il∨) ¬ ◦ (ϕ ∨ ψ) ⊃ (¬ ◦ ϕ ∧ ¬ψ) ∨ (¬ ◦ ψ ∧ ¬ϕ))
(ir∨) (¬ ◦ ϕ ∧ ¬ψ) ∨ (¬ ◦ ψ ∧ ¬ϕ)) ⊃ ¬ ◦ (ϕ ∨ ψ)
(il⊃) ¬ ◦ (ϕ ⊃ ψ) ⊃ (ϕ ∧ ¬ ◦ ψ))
(ir⊃) (ϕ ∧ ¬ ◦ ψ)) ⊃ ¬ ◦ (ϕ ⊃ ψ)

Table 6.2: (Schematic) Hilbert axioms defining paraconsistent logics (� ∈ {∨,∧,⊃})

Ci bC + (i)
mCi + (c)

In Ci, the notions of inconsistency
and contradiction coincide [47].

C1 bC + (a�)
BK + (c),(l),(i),(a�)

C1 is Da Costa’s first paraconsistent
logic [63].

LFI1 Ci + (e), (il�), (ir�) LFI1 is a three-valued maximal
paraconsistent logic [47].

∗ see Table 6.2 for the axioms.

Other Paraconsistent Logics

Discussive Logic. Introduced by Jaśkowski [101], discussive logic D2, was one of
the first paraconsistent logics. The basic idea of this logic (and hence, also its name)
comes from the fact that in a discussion, different opinions might lead to inconsistent
information: ¬ϕ and ϕ can be true at the same time. In discussive logic, this is reflected
by blocking the rule of adjunction, i.e., ϕ,¬ϕ 6` ϕ ∧ ¬ϕ. A similar non-adjunctive
approach was suggested in [153]. Note that the logic D2 is, in fact, a logic of formal
inconsistency [45].

Many-valued Logics. Some many-valued logics are also paraconsistent. For ex-
ample, the logic of paradox LP [7, 151] has three (instead of the classical two) truth
values and formulas can either be “true”, “false”, or “both” (and “true”, as well as “both”
are the designated truth values). Other widely studied many-valued paraconsistent logics

104

(eωl�i) ∼i (ϕ � ψ) ⊃ (∼i ϕ� ∼i ψ) (eωr�i) (∼i ϕ� ∼i ψ) ⊃∼i (ϕ � ψ)
(oωl⊃j) ∼j (ϕ ⊃ ψ) ⊃ (∼j−1 ϕ∧ ∼j ψ) (oωr⊃j) (∼j−1 ϕ∧ ∼j ψ) ⊃∼j (ϕ ⊃ ψ)

(oωl∧j) ∼j (ϕ ∧ ψ) ⊃ (∼j ϕ∨ ∼j ψ) (oωr∧j) (∼j ϕ∨ ∼j ψ) ⊃∼j (ϕ ∧ ψ)

(oωl∨j) ∼j (ϕ ∨ ψ) ⊃ (∼j ϕ∧ ∼j ψ) (oωr∨j) (∼j ϕ∧ ∼j ψ) ⊃∼j (ϕ ∨ ψ)

(pck) ∼k (¬ϕ) ⊃ ¬(∼k ϕ) (cpk) ¬(∼k ϕ) ⊃∼k (¬ϕ)
(ccln) ∼2∼n ϕ ⊃∼n ϕ (ccrn) ∼n ϕ ⊃∼2∼n ϕ

Table 6.3: Hilbert axioms provable in the logics Lω [105] or L2n+2 [106], � ∈ {⊃,∧,∨}

are Belnap’s and Dunn’s four-valued logic B4 [72, 33], Nelson’s paraconsistent logic N4
[3], first-degree entailment FDE [4], logics of logical bilattices [6] or Shramko-Wansing’s
16-valued logic [156].

In [105, 106], the paraconsistent many-valued logics Lω and L2n+2 are presented: Lω
[105] combines classical (¬) and paraconsistent (∼) negations. It is axiomatized over
Cl+ with the axioms

(cpk), (pck), (eωl
�i), (eω

r
�i), (oω

l
⊃j

), (oωr
⊃j

), (oωl
∧j), (oω

r
∧j), (oω

l
∨j), (oω

r
∨j)

depicted in Table 6.3, for any even i ∈ ω, any odd j ∈ ω and any k ∈ ω (where
ω represents the set of natural numbers). L2n+2 [106] contains weak double negation
axioms. It is axiomatized over Cl+ by the Hilbert axioms

(ccln), (ccrn), (eωl
�i), (eω

r
�i), (oω

l
⊃j

), (oωr
⊃j

), (oωl
∧j), (oω

r
∧j), (oω

l
∨j), (oω

r
∨j)

depicted in Table 6.3 for any even i ∈ ωn+1 and any odd j ∈ ωn+1 (ωk denotes the set
{l ∈ ω | l ≤ k}).

Relevance Logics. Another important type of paraconsistent logics are relevance
logics [4, 73]. In these logics a prerequisite for a valid argument is a (relevant) connection
between premises and conclusion, and hence ψ,¬ψ 6` ϕ. The main relevance logics are
the logic of relevant entailment E [4], and the logic of relevant implication R [4].

Adaptive Logics. Introduced by Batens [30, 31], an adaptive logic “adapts itself
to the specific premise set to which it is applied” [32]. An adaptive logic uses two logical
systems: an “upper limit logic” (ULL), e.g. classical logic, and a “lower limit logic” (LLL),
which is weaker than the ULL, e.g. some paraconsistent logic. Reasoning in an adaptive
logic is done by switching between these two logics. Depending on the premises, either
the rules from the ULL or LLL are applied in a proof. For example, when the premises
contain a contradiction, the LLL is used, while in a “non-problematic” case, rules of the
ULL are applied.

105

ϕ⇒ ϕ
ϕ,Γ⇒ ∆, ψ

(⊃, r)
Γ⇒ ∆, ϕ ⊃ ψ

Γ⇒ ∆, ϕ ψ,Γ⇒ ∆
(⊃, l)

ϕ ⊃ ψ,Γ⇒ ∆

Γ⇒ ∆ (w, l)
ϕ,Γ⇒ ∆

Γ⇒ ∆, ϕ, ψ
(∨, r)

Γ⇒ ∆, ϕ ∨ ψ
ϕ,Γ⇒ ∆ ψ,Γ⇒ ∆

(∨, l)
ϕ ∨ ψ,Γ⇒ ∆

Γ⇒ ∆ (w, l)
ϕ,Γ⇒ ∆

ϕ,ψ,Γ⇒ ∆
(∧, l)

ϕ ∧ ψ,Γ⇒ ∆

Γ⇒ ∆, ϕ Γ⇒ ∆, ψ
(∧, r)

Γ⇒ ∆, ϕ ∧ ψ
ϕ,Γ⇒ ∆

(¬, r)
Γ⇒ ∆,¬ϕ

ϕ,¬ϕ,Γ⇒ ∆
(◦, r)

Γ⇒ ∆, ◦ϕ
Γ⇒ ∆, ϕ Γ⇒ ∆,¬ϕ

(◦, l)◦ϕ,Γ⇒ ∆

Γ⇒ ∆, ϕ ϕ,Γ⇒ ∆
(cut)

Γ⇒ ∆

Table 6.4: Sequent calculus Gk for BK

6.2 Related Work in Proof Theory

We give a brief overview of related work that focuses on the introduction of analytic
calculi for paraconsistent logics.

Most of the existing results are however tailored to the specific (class of) logics at
hand and do not provide hints for an automated introduction of analytic calculi for them,
see e.g. [6, 104, 69, 70, 45, 105, 107, 108, 106].

In contrast to these logic-tailored approaches, a modular procedure introducing an-
alytic calculi and semantics using the framework of Nmatrices for the logics of formal
inconsistency is introduced in [14, 16, 17, 18]. The procedure in [16, 17] works for C-
systems which are obtained by extending BK with any axiom contained in Table 6.2
except for (l), (d), (il�) and (ir�). This method consists of the following two steps (note
that they cannot be done in a fully automated way):

(Step 1): A finitely-valued non-deterministic matrix (Nmatrix) M is introduced by
extracting semantic conditions from the axioms extending BK in each specific logic.
The semantic conditions are then used to refine the standard Nmatrix for BK, i.e., they
reduce the level of non-determinism in the Nmatrix.

(Step 2): A cut-free sequent calculus is constructed based on the finitely-valued
Nmatrix M created in the first step. This is achieved by the algorithm in [14] that
works in two stages: (i) Every entry of every truth table of the Nmatrix is translated
into rules of the calculus. In the case of the Nmatrix M for (extensions of) BK this
step can be simplified by translating the semantic conditions of each axiom from (Step 1)
in a modular way into corresponding rules using the six facts mentioned in the example
below2. (ii) When necessary, the resulting rules are then combined and simplified.

The sequent rules obtained in (Step 2) are then added to the sequent calculus Gk for
BK depicted in Table 6.4.

2Note that the obtained rules are equivalent.

106

Example 25 ([16]). We assume truth values of the form 〈x, y〉 where x = 1 iff ϕ is “true”,
and y = 1 iff ¬ϕ is “true”. Hence there are four possible truth values t = 〈1, 0〉, f = 〈0, 1〉,
> = 〈1, 1〉 and ⊥ = 〈0, 0〉.

The logic BK is characterized by the Nmatrix M = ({t, f,>}, {t,>}, T), where
{t,>} are the designated truth values. Note that the fourth truth value ⊥ is excluded by
the axiom (n1)ϕ∨¬ϕ contained in BK. The non-deterministic truth tables T ofM are
defined as follows:

p ¬p ◦p
t {f} {t,>}
> {t,>} {f}
f {t,>} {t,>}

∧ t > f
t {t,>} {t,>} {f}
> {t,>} {t,>} {f}
f {f} {f} {f}

⊃ t > f
t {t,>} {t,>} {f}
> {t,>} {t,>} {f}
f {t,>} {t,>} {t,>}

∨ t > f
t {t,>} {t,>} {t,>}
> {t,>} {t,>} {t,>}
f {t,>} {t,>} {f}

Let us consider the extension of BK with the axiom (o1
∨)◦ϕ ⊃ ◦(ϕ∨ψ) to show how

this axiom is transformed into an equivalent set of sequent rules.
(Step 1) We first extract the semantic conditions from (o1

∨). Let v be a valuation in
M. We must ensure that v(◦ϕ ⊃ ◦(ϕ ∨ ψ)) ∈ {t,>}:

1. v satisfies (o1
∨), if v(◦ϕ) = f (then the implication is true, i.e., t or >). Hence it

is satisfied if v(ϕ) = >, since v(◦>) = f.
2. Otherwise, v(◦(ϕ ∨ ψ)) must be true. We have to ensure that v(◦(ϕ ∨ ψ)) 6= f, i.e.

v(ϕ ∨ ψ) 6= >:
a) If v(ϕ) = v(ψ) = f, v(◦(ϕ ∨ ψ)) 6= f and hence v satisfies (o1

∨).
b) Otherwise, we know that v(ϕ ∨ ψ) will be chosen non-deterministically out of
{t,>}. Thus we have to ensure v(ϕ ∨ ψ) = t by defining the following five
conditions:
(Case ϕ = t): t ∨ t = t ∨ f = t ∨ > = t ∨ x = {t} and
(Case ϕ = f): f ∨ t = f ∨ > = {t}.

Now the truth table for ∨ needs to be refined according to these five semantic conditions.
We obtain the following new truth table for ∨:

∨ t > f
t {t} {t} {t}
> {t,>} {t,>} {t,>}
f {t} {t} {f}

(Step 2) We show how to generate the sequent rules by analyzing the semantic condi-
tions using the following six facts:

1. v(ϕ) = t iff ¬ϕ⇒ is true in v.
2. v(ϕ) = f iff ϕ⇒ is true in v.

107

3. v(ϕ) = > iff ⇒ ϕ and ⇒ ¬ϕ are both true in v.
4. v(ϕ) ∈ {f,>} iff ⇒ ¬ϕ is true in v.
5. v(ϕ) ∈ {t,>} iff ⇒ ϕ is true in v.
6. v(ϕ) ∈ {t, f} iff ϕ,¬ϕ⇒ is true in v.

We can now “read off” the sequent rules that arise from our semantic conditions. We
start by analyzing the first condition of the form ϕ ∨ ψ, t ∨ x = {t}, and match it with
the facts described above. The premise of the new rule is obtained by considering fact 1
above: v(ϕ) = t iff ¬ϕ⇒ is true in v. To obtain the conclusion of our rule, we have to
analyze the whole formula: v(ϕ∨ψ) = t iff ¬(ϕ∨ψ)⇒ is true in v. Thus we obtain the
rule:

¬ϕ,Γ⇒ ∆

¬(ϕ ∨ ψ),Γ⇒ ∆

Analogously, we analyze the second semantic condition, which is also of the form
ϕ∨ψ: f∨ t = f∨> = {t}. Considering fact 2 above, we know that v(ϕ) = f iff ϕ⇒ is
true in v. Moreover, from fact 5, we know that v(ψ) ∈ {t,>} iff ⇒ ψ is true in v. These
two facts give us the two premises of our new rule. The conclusion is again obtained by
fact 1, since v(ϕ ∨ ψ) = t iff ¬(ϕ ∨ ψ)⇒ is true in v:

ϕ,Γ⇒ ∆ Γ⇒ ∆, ψ

¬(ϕ ∨ ψ),Γ⇒ ∆

A cut-free sequent calculus for the logic BK+(o1
∨) is obtained by extending the calculus

Gk with the two rules stated above.

The method proposed in [16, 18] works for logics that have a semantic characteri-
zation in terms of finitely-valued Nmatrices. However, some important LFIs can only
be characterized by infinitely-valued Nmatrices, e.g. logics including the axioms (l) or
(d) from Table 6.2, such as C1 (see page 104). [17] extends the procedure of [16, 18] to
extract cut-free sequent calculi for these logics by adjusting the two-step procedure as
follows:

(Step 1): This step basically remains the same except for the fact that the Nmatrix
requires an infinite number of truth values — thus, the three truth values for BK of the
original procedure (t, f,>) are replaced with three sets of truth values.

(Step 2): Since the algorithm proposed in [14] cannot be applied, as it does not work
for infinitely-valued Nmatrices, the corresponding analytic sequent calculus is obtained
by translating the semantic conditions of each axiom into a sequent rule using six facts
similar to those introduced for the finitely-valued case.

Note however, that the procedure in [16, 17, 18] is not fully automated, since the
construction of the semantics has to be done manually and requires some ingenuity.

108

6.3 Towards Analytic Calculi for Paraconsistent Logics

We describe a procedure to generate sequent calculi and semantics in terms of PNma-
trices. Our procedure can be applied to a large class of paraconsistent logics formulated
as Hilbert systems. The logics we can deal with are obtained by extending the positive
fragment of classical propositional logic Cl+ with axioms of a certain shape. More pre-
cisely, these logics are induced by a family H of Hilbert calculi that are obtained by (i)
extending the language of Cl+ with finitely many unary connectives, and (ii) adding to
HCL+ axioms over the extended language of a certain general form.

Our procedure is fully automated and works in two steps:

(Step 1) We adapt the systematic procedure of [52] (see Section 4.2) to transform the Hilbert
axioms defining H ∈ H into sequent calculus rules. In contrast to the method in
[52], the rules that we generate are logical rules in Gentzen’s terminology, i.e., they
introduce logical connectives. Since the new rules may introduce more than one
connective, the analyticity of the calculus depends on the interaction between all
(new and existing) rules involving the same connectives. This requires a “global
view ” on the obtained calculus, which is provided by the semantics introduced in
step 2.

(Step 2) We extract semantics from the introduced sequent calculi using the framework of
partial non-deterministic matrices (PNmatrices). The semantics allows us to reason
about the analyticity of the obtained calculus. We show that if the PNmatrix
constructed for H is an Nmatrix (i.e., it has no empty spot in the truth tables)
then the corresponding sequent calculus is analytic. Furthermore, the PNmatrix
guarantees that the system H is decidable.

With this procedure, we can automatically create sequent calculi and new seman-
tic foundations for many well-studied logics, as well as infinitely many new ones. For
example, the method works for classical logic, many C-systems [63, 45, 46] or the para-
consistent logics investigated in [106]. While analytic sequent calculi and/or adequate
semantics for some of these logics were already available, the main feature of our ap-
proach is its full automation. Moreover, it is not tailored to the C-systems (as [17, 18])
or to other specific logics (as [106]).

Note that our procedure reverses the two steps of the method in [16, 17, 18], where
first an Nmatrix is constructed for each system and then it is used for introducing a
corresponding analytic sequent calculus. Moreover, in contrast to (almost) all existing
work on paraconsistent logics, and in particular [16, 17, 18], it is fully automated.

6.4 Step 1: Automated Generation of Sequent Calculi

We consider logics in the language LCl+ extended with new unary connectives from UL.
Our algorithm transforms Hilbert axioms of a special form into equivalent logical sequent
rules. The transformation procedure once again utilizes the two key ingredients:

109

(1) the invertible rules of the base calculus LK+ to decompose the axiom, and
(2) the Ackermann lemma:

Lemma 14. Let G be a sequent calculus for L extending LK+, and let

r = ∅/{b1 : ϕ1, . . . , bn : ϕn} and r′ = {{b̂2 : ϕ2}, . . . , {b̂n : ϕn}}/{b1 : ϕ1}

be L-rules where f̂ = t and t̂ = f. Then {r} and {r′} are equivalent in G.

Proof. “⇒”: To show

{{b̂2 : ϕ2}, . . . , {b̂n : ϕn}} `G∪{r} {b1 : ϕ1}

we use an application of r, weakenings and n− 1 cuts:

∅r {b1 : ϕ1, . . . , bn : ϕn}
{b̂n : ϕn}

(bi : W)1≤i<n
{b1 : ϕ1, . . . , bn−1 : ϕn−1, b̂n : ϕn}

(cut){b1 : ϕ1, . . . , bn−1 : ϕn−1}
...

(cut)
...

{b1 : ϕ1}

“⇐”: For the other direction, i.e.

`G∪{r′} {b1 : ϕ1, . . . , bn : ϕn}

we use (id), weakenings and r′:

{b̂2 : ϕ2, b2 : ϕ2}
(bi : W)2<i≤n

{b̂2 : ϕ2, b2 : ϕ2, . . . , bn : ϕn} . . .

{b̂n : ϕn, bn : ϕn}
(bi : W)2≤i<n

{b2 : ϕ2, . . . , bn : ϕn, b̂n : ϕn}
r′{b1 : ϕ1, b2 : ϕ2, . . . , bn : ϕn}

We define a grammar for the class of axioms that can be handled with our procedure.
Our procedure works for Hilbert systems that are defined by extending HCL+ with
axioms of the set AxL:

Definition 39. AxL is the set of L-formulas that:

1. are generated by the following grammar (I is the initial variable):

I = R1 | R2 P1 = (P1 � P1) | ?̄p1 | p1 | p2

R1 = (R1 � P1) | (P1 �R1) | ?̄p1 P2 = (P2 � P2) | ?̄p1 | p1 | ?̄p2 | p2

R2 = (R2 � P2) | (P2 �R2) | ?̄(p1 � p2) for � ∈ {∧,∨,⊃}, ?̄ ∈ U∗L \ {ε}

110

2. and satisfy the following conditions: for some subformula ϕ = ?̄p1 of an L-formula
arising from the start symbol R1 (and for the subformula ϕ = ?̄(p1 � p2) of an
L-formula arising from R2, resp.): ϕ must not be contained
(a) in a positively3 occurring (sub)formula of the form ψ1 ∧ ψ2, and
(b) in a negatively occurring (sub)formula of the form ψ1 ∨ ψ2 or ψ1 ⊃ ψ2.

Roughly speaking, the axioms4 in AxL contain

(R1) at least one propositional variable p1 prefixed with a non-empty sequence of con-
nectives from UL and possibly the propositional variables p1, p2, or

(R2) exactly one formula (p1�p2) prefixed with a non-empty sequence of connectives from
UL and possibly the propositional variables p1, p2, possibly prefixed with sequences
of connectives from UL.

Example 26. The following axioms are covered by the grammar in Definition 39:

p1 ∨ ¬p1 (n1)

◦p1 ⊃ ◦¬p1 (a¬)

¬ ◦ p1 ⊃ (p1 ∧ ¬p1) (i)

¬(p1 ∨ p2) ⊃ (¬p1 ∧ ¬p2) (ol
∨)

(¬ ◦ p1 ∧ ¬p2) ∨ (¬ ◦ p2 ∧ ¬p1)) ⊃ ¬ ◦ (p1 ∨ p2) (ir∨)

Note that these axioms are the ones depicted in Table 6.2. In general, all axioms from
Table 6.2 fall into the class AxL with the exception of the following two:

¬(p1 ∧ ¬p1) ⊃ ◦p1 (l)

¬(¬p1 ∧ p1) ⊃ ◦p1 (d)

Definition 40. H is the family of Hilbert calculi obtained by extending HCL+ with any
finite set of axioms from AxL for some language L.

H includes many well-known Hilbert calculi, e.g.:

• the standard calculus for (propositional) classical logic Cl (that is obtained by
adding the axioms (n1) and (n2) from Table 6.2, page 104 to HCL+).
• the Hilbert calculi for the logics B, BK, bC, Ci, C1 or LFI1 from page 104.
• the Hilbert calculi for other C-systems that are defined by adding to HCL+ the

axioms (b) and (n1), as well as different subsets of the other axioms (except (l)
and (d)) from Table 6.2.

3Recall that a subformula ϕ occurs negatively (positively, resp.) in an L-formula ψ if there is an odd
(even, resp.) number of implications ⊃ in ψ having ϕ as a subformula of its antecedent, see e.g., [44].

4Note that the formulas in AxL can actually be interpreted as axiom schemas in which p1, p2 are
replaced with metavariables ϕ,ψ that can be substituted by any L-formula in the instances of the schema.
To make the presentation of the semantics simpler, we keep using p1, p2 in the following sections.

111

• the Hilbert calculi for the logics L2n+2 for each n ≥ 0 discussed in [106], which are
obtained by adding to HCL+ the axioms depicted in Table 6.3 (except (cpk) and
(pck)).

For every Hilbert system H ∈ H, we define a set ΘH containing prefixes of the
sequences of the unary connectives to keep track of the unary connectives occurring in
H. The meaning of this set will become clear in the second step of our procedure. In
short, ΘH will determine the number and the shape of the truth values for (the PNmatrix
of) H.

Definition 41. For an L-formula ψ, let Θψ denote the set of all prefixes (including the
empty one ε) of the maximal sequences of connectives from UL that occur in ψ. For
H ∈ H, ΘH =

⋃
ψ∈H Θψ.

Example 27. Let UL = {◦, ?,¬}. Θψ is as follows:

ψ1 = ? ◦ ¬p1 ⊃ p1 Θψ1 = {ε, ?, ?◦, ? ◦ ¬}
ψ2 = ? ? (? ◦ p1 ∨ ¬ ◦ p2) ⊃ ¬p1 Θψ2 = {ε, ?,¬, ??, ?◦,¬◦}

From axioms to logical sequent rules

We now show how to construct a sequent calculus GH that is equivalent (in the sense of
Definition 7) to a given Hilbert system H ∈ H. The idea is to transform the axioms of
H belonging to AxL into equivalent logical rules and add the obtained rules to LK+.

Given any axiom ϕ ∈ AxL, our transformation procedure roughly works as follows:

(i) We start from the rule r0 = ∅/{t : ϕ}. By utilizing the invertibility of the logical
rules of LK+ as much as possible, we obtain a set of rules R equivalent to {r0},
where each r ∈ R has the form ∅/{b1 : ϕ1, . . . , bn : ϕn} with bi ∈ {t, f}. Note
that due to the shape of ϕ (see Definition 39) it must be the case that each ϕi is
either of the form ?̄p1 or ?̄p2 with ?̄ ∈ ΘH , and there is at most one ϕi of the form
?̄(p1 � p2) for ?̄ ∈ ΘH \ {ε}.

(ii) Next, we remove each rule r ∈ R whose conclusion contains {t : pi, f : pi} for
i ∈ {1, 2}. Moreover, for each remaining rule, if the conclusion does not contain
?̄(p1 � p2) for ?̄ ∈ ΘH \ {ε}, we remove all variables p2 and use Lemma 15 below to
ensure that the resulting rule is equivalent to r.

(iii) Finally, we use the Ackermann lemma. In each rule, we choose one labelled formula
and move all remaining formulas but this one to the premises of the rule, changing
their side of the sequent (see Lemma 14). The formula that remains in the conclu-
sion will be the one introduced by the rule and will be either of the form ?̄p1 or
?̄(p1 � p2) for ?̄ ∈ ΘH \ {ε}.

We first give an example to illustrate the steps of the algorithm:

Example 28. Let ϕ be the axiom (n2) p1 ⊃ (¬p1 ⊃ p2) (see Table 6.2). The algorithm
works as follows:

112

Rule Application form

Θ-unary P/{t : ?̄p1}
Γ, .̄1ϕ⇒ ∆ . . . Γ, .̄nϕ⇒ ∆ Γ⇒ •̄1ϕ,∆ . . . Γ⇒ •̄mϕ,∆

Γ⇒ ?̄ϕ,∆

P/{f : ?̄p1}
Γ, .̄1ϕ⇒ ∆ . . . Γ, .̄nϕ⇒ ∆ Γ⇒ •̄1ϕ,∆ . . . Γ⇒ •̄mϕ,∆

Γ, ?̄ϕ⇒ ∆

where P = {{f : .̄1p1}, . . . , {f : .̄np1}, {t : •̄1p1}, . . . , {t : •̄mp1}}

Θ-binary Q/{t : ?̄(p1 � p2)}
Γ, .̄1ϕi1 ⇒ ∆ . . . Γ, .̄nϕin ⇒ ∆ Γ⇒ •̄1ϕj1 ,∆ . . . Γ⇒ •̄mϕjm ,∆

Γ⇒ ?̄(ϕ1 � ϕ2),∆

Q/{f : ?̄(p1 � p2)}
Γ, .̄1ϕi1 ⇒ ∆ . . . Γ, .̄nϕin ⇒ ∆ Γ⇒ •̄1ϕj1 ,∆ . . . Γ⇒ •̄mϕjm ,∆

Γ, ?̄(ϕ1 � ϕ2)⇒ ∆

where Q = {{f : .̄1pi1}, . . . , {f : .̄npin}, {t : •̄1pj1}, . . . , {t : •̄mpjm}}
Table 6.5: The general form of our rules (?̄ ∈ Θ \ {ε}, .̄i, •̄j ∈ Θ, � ∈ {∧,∨,⊃},
i1, . . . , in, j1, . . . , jm ∈ {1, 2})

∅/{t : p1 ⊃ (¬p1 ⊃ p2)}
−→(i) ∅/{f : p1, t : ¬p1 ⊃ p2)}
−→(i) ∅/{f : p1, f : ¬p1, t : p2}
−→(ii) ∅/{f : p1, f : ¬p1}
−→(iii) {{t : p1}}/{f : ¬p1}

The rule that will be added to the base calculus is hence {{t : p1}}/{f : ¬p1}.

The rules that are generated by this algorithm have a certain general form due to
the special format of their equivalent axiom ϕ ∈ AxL. Depending on the shape of the
axiom, we distinguish between two types of rules, which are defined in Table 6.5:

• Θ-unary rules arise from axioms generated from R1 in the grammar of Definition 39.
• Θ-binary rules are generated starting from R2.

The distinction between these types of rules will be crucial for the definitions of the
semantics in step 2 (see Section 6.5).

Due to this special shape of the generated rules, we call the resulting sequent calculi
Θ-simple:

Definition 42. Let Θ be a non-empty subset of U∗L that is closed under prefixes (in
particular, ε ∈ Θ). An L-rule Q/s is called Θ-simple if it is either Θ-unary or Θ-binary
(see Table 6.5). A sequent calculus for L is called Θ-simple if it is obtained by augmenting

113

LK+ with a finite set of Θ-simple L-rules. We shall omit Θ when it is clear from the
context.

We now show that our transformation procedure indeed generates Θ-simple rules
from axioms within AxL.

Note that if we decompose axioms that are generated by R1 in the grammar of
Definition 39, p2 can appear only as b : p2 with b ∈ {t, f}, see e.g. Example 28. With
the following lemma we show that in step (ii), b : p2 can be removed from the rule:

Lemma 15. Let G be a sequent calculus for L extending LK+. Let s be an L-sequent,
and let s′ = s ∪ {b : p}, where b ∈ {f, t} and p is an atomic formula that does not occur
in s. Then, `G∪{∅/s′} Γ⇒ ϕ iff `G∪{∅/s} Γ⇒ ϕ, for every L-sequent Γ⇒ ϕ.

Proof. “⇒”: Suppose that `G∪{∅/s′} Γ ⇒ ϕ. We can simulate applications of ∅/s′ by
using applications of weakenings and ∅/s. Hence, `G∪{∅/s} Γ⇒ ϕ clearly holds.

“⇐”: For the converse direction, suppose that `G∪{∅/s} Γ⇒ ϕ. Moreover, let P be a
derivation of Γ⇒ ϕ in G ∪ {∅/s}. We distinguish two cases:

• b = f. Then every application of ∅/s in P deriving σ(s) can be simulated in
G ∪ {∅/s′} by using (cut) on σ(s) ∪ {f : p1 ⊃ p1} (obtained by ∅/s′ in which p is
substituted with p1 ⊃ p1) and σ(s) ∪ {t : p1 ⊃ p1} (which is derivable in LK+).
• b = t. Then every application of ∅/s in P is replaced with an application of ∅/s′,

in which p is substituted with ϕ. t : ϕ is then propagated to the end sequent.

Theorem 14. Let H ∈ H be a Hilbert calculus for L. There is an algorithm for con-
structing an equivalent ΘH-simple sequent calculus GH for L.

Proof. Let H ∈ H, ψ ∈ AxL ∩H and G−H be the sequent calculus equivalent to H \ {ψ}
in the sense of Definition 7. We construct a sequent calculus GH equivalent to H by
extending G−H with ΘH -simple rules that are obtained from ψ. We transform ψ into a
set Rψ of ΘH -simple rules such that H and GH = G−H ∪Rψ are equivalent. The theorem
follows by repetitive applications of this claim.

First, let rψ = ∅/{t : ψ}. We start by showing that H is equivalent to G−H ∪ {rψ}.
The first direction, Γ `H ϕ implies `G−H∪{rψ} Γ ⇒ ϕ, is easy and proceeds by induction
on the height of the derivation in H. For the converse direction, suppose we have a
proof P in G−H ∪{rψ} of the sequent Γ⇒ ϕ. Then there are substitutions σ1, . . . , σn, for
which we can transform P into a proof of Γ, σ1(ψ), . . . , σn(ψ) ⇒ ϕ in G−H , by replacing
every application of rψ with the identity axiom {f : σi(ψ), t : σi(ψ)} (and weakening),
and propagating f : σi(ψ) through the derivation to the end sequent. The equivalence of
H \ {ψ} and G−H entails that Γ, σ1(ψ), . . . , σn(ψ) `H\{ψ} ϕ, and it immediately follows
that Γ `H ϕ.

The algorithm to transform rψ into a set of ΘH -simple rules works in three steps:
(Step i): We use the logical rules for ∧,∨ and ⊃ in LK+ to obtain a finite set of rules

R such that (i) R is equivalent to {rψ} and (ii) each r ∈ R has the form ∅/s, where s

114

has one of the following forms (depending on whether ψ is generated by R1 or R2 in the
grammar of Definition 39):

1. s consists of at least one labelled formula of the form b : ?̄p1 for b ∈ {f, t} and
?̄ ∈ ΘH \ {ε} and any number of labelled formulas of the form c : p2 or c : .̄p1 for
c ∈ {f, t} and .̄ ∈ ΘH

2. s consists of exactly one labelled formula of the form b : ?̄(p1 � p2) for b ∈ {f, t},
?̄ ∈ ΘH \ {ε} and � ∈ {∧,∨,⊃}, and any number of labelled formulas of the form
c : .̄pi for i ∈ {1, 2}, c ∈ {f, t} and .̄ ∈ ΘH .

The equivalence between {rψ} and R easily follows by the invertibility of the logical
rules in LK+ (and, hence, in G−H). We prove that, when ψ is generated by R2, s has the
form (2) above (the proof for (1) is similar). Indeed if (∗) each r′ψ ∈ R contains exactly
one labelled formula of the form b : ?̄(p1�p2), ?̄ ∈ ΘH \{ε}, then we are done. Otherwise,
we apply the logical rules of LK+ according to the outermost binary connective of some
b : ψj in r′ψ ∈ R until we reach condition (∗). We distinguish the following cases:

b : ψj = t : ϕ1 ⊃ ϕ2 (or t : ϕ1 ∨ ϕ2 or f : ϕ1 ∧ ϕ2, resp.). By using (t :⊃) (or (t : ∨) or
(f : ∧), resp.), we obtain a new rule r1

ψ = r′ψ where b : ψj is replaced by f : ϕ1, t : ϕ2

(or t : ϕ1, t : ϕ2 or f : ϕ1, f : ϕ2, resp.) and hence it contains one binary connective
less.

b : ψj = t : ϕ1 ∧ ϕ2 (or f : ϕ1 ⊃ ϕ2 or f : ϕ1 ∨ ϕ2, resp.). By using (t : ∧) (or (f :⊃) or
(f : ∨), resp.), we obtain two rules {r1

ψ, r
2
ψ}. r1

ψ = r′ψ where b : ψj is replaced by
t : ϕ1 (or t : ϕ1 or f : ϕ1, resp.) and r2

ψ = r′ψ where b : ψj is replaced by t : ϕ2 (or
f : ϕ2 or f : ϕ2, resp.). Note that ?̄(p1 � p2) is not a subformula of ψj by condition
(i) ((ii), resp.) in Definition 39.

(Step ii): Obviously, we can discard from R all rules ∅/s for which {f : pi, t : pi} ⊆ s
for i ∈ {1, 2}, keeping the equivalence with {rψ}. For each rule ∅/s remaining in R: if
s has the form (1) and it contains some b : p2, by Lemma 15 we remove these formulas
and obtain an equivalent set of rules.

(Step iii): For each rule ∅/s ∈ R, we take (a) b : ?̄p1, ?̄ ∈ ΘH \ {ε}, b ∈ {t, f} if s
is of form (1), or (b) b : ?̄(p1 � p2), ?̄ ∈ ΘH \ {ε}, b ∈ {t, f} if s is of form (2). We use
Lemma 14 to move all remaining labelled formulas to the premises of the rule, changing
their side of the sequent, to obtain a set Rψ of ΘH -simple rules equivalent to {rψ}. Note
that the rules are ΘH -unary, in case (a) and ΘH -binary in case (b).

Let GH be G−H ∪Rψ. GH is equivalent to G−H ∪{rψ} and, hence, equivalent to H.

Example 29. The rule equivalent to the axiom (c) ¬¬p1 ⊃ p1 (see Table 6.2) is con-
structed as follows:

∅/{t : ¬¬p1 ⊃ p1}
−→(i) ∅/{f : ¬¬p1, t : p1}
−→(iii) {{f : p1}}/{f : ¬¬p1}

115

This is the rule (f : ¬¬) of Example 23.

Example 30. The rule equivalent to the axiom (eωr
∧2) (¬¬p1 ∧ ¬¬p2) ⊃ ¬¬(p1 ∧ p2)

(see Table 6.3 where ∼ is replaced with ¬) is constructed as follows:

∅/{t : (¬¬p1 ∧ ¬¬p2) ⊃ ¬¬(p1 ∧ p2))}
−→(i) ∅/{f : ¬¬p1 ∧ ¬¬p2, t : ¬¬(p1 ∧ p2)}
−→(i) ∅/{f : ¬¬p1, f : ¬¬p2, t : ¬¬(p1 ∧ p2)}
−→(iii) {{t : ¬¬p1}, {t : ¬¬p2}}/{t : ¬¬(p1 ∧ p2)}

This is the rule (t : ¬¬∧) of Example 23.

We showed that we can define sequent calculi for the Hilbert systems belonging to the
familyH. But this restriction might seem artificial since the transformation procedure can
easily be adapted to further extensions of Cl+. This is the case, e.g., for the infinitely-
valued logic Lω in [105]. The reason for this restriction is indeed not a limit of the
transformation procedure, but of the automated generation of the semantics in step 2,
which by now only works for Hilbert systems belonging to H.

6.5 Step 2: Automated Extraction of Semantics

We show how to algorithmically obtain semantics for the sequent calculi generated in step
1 by using the semantic framework of partial non-deterministic matrices (PNmatrices).
From now on, let Θ denote an arbitrary non-empty subset of U∗L that is closed under
prefixes (in particular, ε ∈ Θ). We show how to extract a PNmatrixMG from a Θ-simple
sequent calculus G such that `G s iff `MG

s.
As already mentioned before, the set Θ plays an important role: it determines the

number and the shape of the truth values of the PNmatrixMG. Let us first explain this
relationship.

Usually, the truth values t, f only give information about whether a formula ϕ is
“true” or “false”. In our case, however, we do not only want to have information about ϕ,
but also about all the formulas of the form ?̄ϕ for every ?̄ ∈ Θ. Hence, instead of using
truth values such as t, f, we use functions from Θ to {t, f}. These functions provide us
with information about the “truth” or “falsity” of ?̄ϕ. And since Θ always contains ε, we
also have knowledge about ϕ. We denote this set of functions with FΘ:

Definition 43. Let FΘ denote the set of functions Θ → {f, t}. For ?̄ ∈ Θ and u ∈ FΘ,
we write u?̄ to denote u(?̄). We write 〈?̄1 : b1, . . . , ?̄n : bn〉 for the function u, such that
u?̄i = bi for 1 ≤ i ≤ n and Θ = {?̄1, . . . , ?̄n}.

A function v : L → FΘ is called consistent if v(.̄ϕ)?̄ = v(ϕ)?̄.̄ for every formula ϕ
and ?̄, ?̄.̄ ∈ Θ.

By using FΘ as a set of truth values, the information about “truth/falsity” of a formula
can occur in several places in the truth values assigned by a valuation. For example, when
Θ = {ε,¬}, the information whether ¬ϕ is “true” occurs in v(¬ϕ)ε and in v(ϕ)¬. The

116

consistency property in Definition 43 ensures that there are no contradictions between
these places that store the same information.

We now finally turn to step 2 of our general procedure. The algorithm to extract
semantics out of any given Θ-simple sequent calculus is based on the following observa-
tions:

• The Θ-unary rules of G (see Definition 42) affect certain relationships between
various formulas of the form ?̄ϕ for ?̄ ∈ Θ. Thus, we only consider those truth
values from all the possible functions in FΘ that respect the Θ-unary rules, see
Definition 44.
• The truth tables of the unary connectives are constructed using the information

contained in each of the truth values concerning each connective. These tables will
guarantee thatMG-valuations are consistent.
• The truth tables of the binary connectives are constructed using the Θ-binary rules

of G.

To defineMG, we use the following additional notions:

Definition 44. Let ?̄ ∈ Θ and u1, u2 ∈ FΘ.

• u1 satisfies an L-sequent of the form {b : ?̄p1} if u?̄1 = b.
• u1 respects a Θ-unary rule Q/{b : ?̄ p1} if it satisfies {b : ?̄p1} whenever it satisfies

every q ∈ Q.
• The ordered pair 〈u1, u2〉 satisfies an L-sequent of the form {b : ?̄pi} if u?̄i = b for
i ∈ {1, 2}.

Example 31. Let Θ = {ε,¬, ◦,¬¬}. Consider the following L-sequents:

{f : p1} (s1)

{f : ¬p1} (s2)

{f : ¬¬p2} (s3)

{t : ◦p2} (s4)

the following functions

〈ε : f,¬ : f, ◦ : f,¬¬ : f〉 (x)

〈ε : t,¬ : f, ◦ : t,¬¬ : t〉 (y)

and the Θ-unary rule

r = {{f : p1}, {f : ¬p1}}/{f : ¬¬p1}

Then x satisfies s1, s2, s3 and does not satisfy s4. y satisfies s2, s4 and does not satisfy
s1, s3. x respects r as it satisfies both premises, {f : p1} and {f : ¬p1}, and the conclusion
{f : ¬¬p1}. y also respects r because it does not satisfy the premise {f : p1}.

117

We can now construct the PNmatrixMG corresponding to a Θ-simple sequent cal-
culus G:

Definition 45. Let G be a Θ-simple sequent calculus. Its PNmatrixMG is defined as
follows:

• The set of truth values VMG
contains all functions in FΘ that respect all Θ-unary

rules of G.
• The set of designated truth values DMG

is {u ∈ VMG
| uε = t}.

• For any unary connective ? ∈ UL, the truth table for ? is given by:

?MG
(u1) = {u ∈ VMG

| u?̄ = u?̄?1 whenever ?̄? ∈ Θ}.

• For � ∈ {∧,∨,⊃} and u1, u2 ∈ VMG
, �MG

(u1, u2) is the set of all u ∈ VMG
satisfy-

ing:

1. uε ∈ �MCl+
(uε1, u

ε
2) (where �MCl+

is the classical truth table of �; see Exam-
ple 24).

2. For every Θ-binary rule of G of the form Q/{b : ?̄(p1 �p2)}, if 〈u1, u2〉 satisfies
every q ∈ Q then u?̄ = b.

Example 32. Consider the calculus H0 that extends HCL+ with the two axioms from
Example 29 (c) ¬¬p1 ⊃ p1 and Example 30 (eωr

∧2) (¬¬p1∧¬¬p2) ⊃ ¬¬(p1∧p2) . Then,
ΘH0 = {ε,¬,¬¬}. The corresponding ΘH0-simple sequent calculus GH0 has one unary
rule

ru = {{f : p1}}/{f : ¬¬p1}
and one binary rule

rb = {{t : ¬¬p1}, {t : ¬¬p2}}/{t : ¬¬(p1 ∧ p2)}

We construct the PNmatrix M =MGH0
according to Definition 45. We start by listing

FΘH0
:

FΘH0
= {〈ε : f,¬ : f,¬¬ : f〉, 〈ε : f,¬ : f,¬¬ : t〉, 〈ε : f,¬ : t,¬¬ : f〉, 〈ε : f,¬ : t,¬¬ : t〉,
〈ε : t,¬ : f,¬¬ : f〉, 〈ε : t,¬ : f,¬¬ : t〉, 〈ε : t,¬ : t,¬¬ : f〉, 〈ε : t,¬ : t,¬¬ : t〉}

First, we determine the set VM of truth values that respect the unary rules of GH0.
The only relevant unary rule in this case is ru. Since u ∈ VM respects ru iff

u¬¬ = f whenever uε = f

we delete the values

{〈ε : f,¬ : f,¬¬ : t〉, 〈ε : f,¬ : t,¬¬ : t〉}

and obtain:

118

VM = {〈ε : f,¬ : f,¬¬ : f〉, 〈ε : f,¬ : t,¬¬ : f〉, 〈ε : t,¬ : f,¬¬ : f〉,
〈ε : t,¬ : f,¬¬ : t〉, 〈ε : t,¬ : t,¬¬ : f〉, 〈ε : t,¬ : t,¬¬ : t〉}

The set of designated truth values is:

DM = {〈ε : t,¬ : f,¬¬ : f〉, 〈ε : t,¬ : f,¬¬ : t〉, 〈ε : t,¬ : t,¬¬ : f〉, 〈ε : t,¬ : t,¬¬ : t〉}

Next we define the truth table for ¬. For every u1 ∈ VM, we take all u ∈ VM that
satisfy the condition

u?̄ = u?̄¬1

for all ?̄ ∈ ΘH0 such that ?̄¬ ∈ ΘH0. For instance, let u1 = 〈ε : f,¬ : t,¬¬ : f〉. We
consider those elements u from VM in which

uε = u¬1 = t and u¬ = u¬¬1 = f

The only such elements are

〈ε : t,¬ : f,¬¬ : f〉 and 〈ε : t,¬ : f,¬¬ : t〉

The truth table for ¬ is thus defined as follows (we write below 〈x, y, z〉 instead of 〈ε :
x,¬ : y,¬¬ : z〉):

¬M
〈f, f, f〉 {〈f, f, f〉}
〈f, t, f〉 {〈t, f, f〉, 〈t, f, t〉}
〈t, f, f〉 {〈f, f, f〉}
〈t, f, t〉 {〈f, t, f〉}
〈t, t, f〉 {〈t, f, f〉, 〈t, f, t〉}
〈t, t, t〉 {〈t, t, f〉, 〈t, t, t〉}

Finally, we obtain the truth tables for the binary connectives which must meet the re-
quirements arising (1) from the classical truth tables and (2) from the binary rules of
GH0. We show the case of ∧. The only binary rule of GH0 that involves ∧ is rb, which
imposes the requirement that for every u ∈ ∧M(u1, u2) we have

u¬¬ = t whenever u¬¬1 = t and u¬¬2 = t

In addition, uε must behave classically. Thus we obtain the following truth table (let
FM = VM \ DM):

∧M 〈f, f, f〉 〈f, t, f〉 〈t, f, f〉 〈t, f, t〉 〈t, t, f〉 〈t, t, t〉
〈f, f, f〉 FM FM FM FM FM FM
〈f, t, f〉 FM FM FM FM FM FM
〈t, f, f〉 FM FM DM DM DM DM
〈t, f, t〉 FM FM DM {〈t, f, t〉, 〈t, t, t〉} DM {〈t, f, t〉, 〈t, t, t〉}
〈t, t, f〉 FM FM DM DM DM DM
〈t, t, t〉 FM FM DM {〈t, f, t〉, 〈t, t, t〉} DM {〈t, f, t〉, 〈t, t, t〉}

119

Example 33. Consider HCL+∈ H, where ΘHCL+ = {ε}. By applying the method de-
scribed in step 1 (Section 6.4), we obtain GHCL+ = LK+. The corresponding PNmatrix
MLK+ has two truth values u1, u2 ∈ {ε} → {t, f}, where u1(ε) = t and u2(ε) = f.
Identifying u1, u2 with t and f respectively leads to the classical PNmatrix MCl+ of
Example 24.

The next lemma asserts thatMG valuations are always consistent.

Lemma 16. Let G be a Θ-simple sequent calculus for a propositional language L, and
v be an MG-valuation for L. Then v(.̄ϕ)?̄ = v(ϕ)?̄.̄ for every formula ϕ and .̄, ?̄ ∈ U∗L
such that ?̄.̄ ∈ Θ.

Proof. By induction on the length of .̄. In the base case, when .̄ = ε, we are done.
Suppose the claim holds when .̄ is of length n and let ?.̄ ∈ U∗L (for ? ∈ UL). Since v is
anMG-valuation, v(?.̄ϕ) ∈ ?MG

(v(.̄ϕ)). By Definition 45, this implies that v(?.̄ϕ)?̄ =
v(.̄ϕ)?̄? (note that ?̄? ∈ Θ since Θ is closed under prefixes and ?̄ ? .̄ ∈ Θ). By the
inductive hypothesis, the claim v(.̄ϕ)?̄? = v(ϕ)?̄?.̄ holds.

We are now ready to prove soundness and completeness for G with respect toMG.

Theorem 15 (Soundness and completeness). Let G be a Θ-simple sequent calculus for
L and s0 be an L-sequent. Then, `G s0 iff `MG

s0.

Proof. “⇒”: It suffices to show that the applications of the rules of G are “sound”.
Consider an application of a rule r = Q/s of G inferring σ(s)∪ c from {σ(q)∪ c | q ∈ Q},
where σ is an L-substitution and c is an L-sequent. Let v be an MG-valuation for L.
Suppose that v satisfies σ(q) ∪ c for every q ∈ Q. We show that v satisfies σ(s) ∪ c. If v
satisfies c, we are done. Suppose otherwise; then v satisfies σ(q) for all q ∈ Q. We show
that v satisfies σ(s). We only consider the case when r is a Θ-unary rule (the proofs for
Θ-binary and the rules of LK+ rules are similar). Hence, s = {b0 : .̄ p1} for .̄ ∈ Θ \ {ε}
and b0 ∈ {t, f}. Let ψ1 = σ(p1). We show that v(ψ1) satisfies every q ∈ Q. Let
q = {b : ?̄ p1} be a premise in Q. Then, ?̄ ∈ Θ. The fact that v satisfies σ(q) = {b : ?̄ψ1}
implies that v(?̄ψ1)ε = b. By Lemma 16, v(ψ1)?̄ = b. Hence v(ψ1) satisfies q. Since
v(ψ1) ∈ VMG

, it respects r, and so v(ψ1).̄ = b0. By Lemma 16, v(.̄ψ1)ε = b0. Thus, v
satisfies σ(s).

“⇐”: Suppose that 6`G s0. We construct an MG-valuation for L that does not
satisfy s0. It is a standard matter to construct a “maximal” (infinite) set Ω of labelled
L-formulas, extending s0, that satisfies the following conditions:

1. 6`G s for every L-sequent s ⊆ Ω.
2. For every labelled L-formula b : ψ /∈ Ω, we have `G s∪ {b : ψ} for some L-sequent
s ⊆ Ω.

Note that the availability of the rules (cut) and (id) implies the following two facts:

120

1. For every L-formula ψ, either f : ψ ∈ Ω or t : ψ ∈ Ω. Otherwise `G s1 ∪ {f : ψ}
and `G s2 ∪ {t : ψ} with s1, s2 ⊆ Ω. By applying (cut) (and possibly weakenings),
we obtain `G s1 ∪ s2. Since s1 ∪ s2 ⊆ Ω, this contradicts the properties of Ω.

2. For every L-formula ψ, either f : ψ /∈ Ω or t : ψ /∈ Ω. Otherwise {f : ψ, t : ψ} ⊆ Ω,
but `G {f : ψ, t : ψ} using (id).

Let v be the function from L to FΘ defined by v(ψ)?̄ = b iff b : ?̄ψ /∈ Ω for every ψ ∈ L
and ?̄ ∈ Θ. By the two facts above, v is well defined. To show that v is anMG-valuation,
we use the following properties:

(*) Let σ be an L-substitution. If v(σ(p1)) satisfies an L-sequent q of the form {b : ?̄p1}
where ?̄ ∈ Θ then `G s ∪ σ(q) for some L-sequent s ⊆ Ω.
Proof: Suppose that v(σ(p1)) satisfies q. Thus v(σ(p1))?̄ = b. It follows that
b : ?̄σ(p1) /∈ Ω. Hence there is some L-sequent s ⊆ Ω such that `G s∪{b : ?̄σ(p1)}.

(**) Let σ be an L-substitution. If 〈v(σ(p1)), v(σ(p2))〉 satisfies an L-sequent q of the
form {b : ?̄pi} where ?̄ ∈ Θ and i ∈ {1, 2} then `G s ∪ σ(q) for some L-sequent
s ⊆ Ω.
Proof: Suppose that 〈v(σ(p1)), v(σ(p2))〉 satisfies q. Thus v(σ(pi))

?̄ = b. It follows
that b : ?̄σ(pi) /∈ Ω. Hence there is some L-sequent s ⊆ Ω such that `G s ∪ {b :
?̄σ(pi)}.

We first prove that for every L-formula ψ, v(ψ) respects all the Θ-unary rules of G,
and so v(ψ) ∈ VMG

. Let ψ be an L-formula, and r = Q/{b : ?̄p1} be a Θ-unary rule
of G. Suppose that v(ψ) satisfies every q ∈ Q. Consider an L-substitution σ for which
σ(p1) = ψ. By (*), for every q ∈ Q there is some sequent sq ⊆ Ω such that `G sq ∪ σ(q).
By applying (weakenings and) r we obtain `G

⋃
q∈Q sq ∪ {b : ?̄ψ}. Thus, {b : ?̄ψ} /∈ Ω

and so v(ψ)?̄ = b.
Next, we show that v respects the truth tables ofMG:

1. Let ? ∈ UL and ψ ∈ L. We show that v(?ψ) ∈ ?MG
(v(ψ)). By the definition

of MG, it suffices to show that v(?ψ)?̄ = v(ψ)?̄? whenever ?̄? ∈ Θ. This follows
directly from the definition of v.

2. Let � ∈ {∧,∨,⊃} and ψ1, ψ2 ∈ L. We show that v(ψ1 � ψ2) ∈ �MG
(v(ψ1), v(ψ2))

by showing (i) v(ψ1 � ψ2)ε ∈ �MCl+
(v(ψ1)ε, v(ψ2)ε) and (ii) v(ψ1 � ψ2)?̄ = b for

every Θ-binary rule r = Q/{b : ?̄(p1 � p2)} of G for which 〈v(ψ1), v(ψ2)〉 satisfies
every q ∈ Q.

(i) We prove (i) for the specific case when � = ∧ and v(ψ1)ε = v(ψ2)ε = t. All
other cases are handled similarly. We show that v(ψ1∧ψ2)ε = t. The definition
of v ensures that both t : ψ1 and t : ψ2 do not occur in Ω. Thus `G s1∪{t : ψ1}
and `G s2 ∪ {t : ψ2} for some s1, s2 ⊆ Ω. By applying (weakenings and) the
rule (t : ∧) of LK+, we obtain that `G s1 ∪ s2 ∪ {t : ψ1 ∧ψ2}. Hence we have
t : ψ1 ∧ ψ2 /∈ Ω. It follows that v(ψ1 ∧ ψ2)ε = t.

121

(ii) Let r = Q/{b : ?̄(p1 � p2)} be a Θ-binary rule of G, such that 〈v(ψ1), v(ψ2)〉
satisfies every q ∈ Q. Consider an L-substitution σ for which σ(p1) = ψ1 and
σ(p2) = ψ2. By (**), for every q ∈ Q there is some sequent sq ⊆ Ω such that
`G sq ∪ σ(q). By applying (weakenings and) r we obtain `G

⋃
q∈Q sq ∪ {b :

?̄(ψ1 � ψ2)}. Thus, {b : ?̄(ψ1 � ψ2)} /∈ Ω and so v(ψ1 � ψ2)?̄ = b.

Finally, note that v does not satisfy s0. Indeed, every b : ψ ∈ s0 is also an element of Ω,
and hence v(ψ)ε 6= b. Thus we have v 6|=MG

ψ for every t : ψ ∈ s, and v |=MG
ψ for

every f : ψ ∈ s.

Combining the previous theorem with Theorem 14, we get:

Corollary 5. Let H ∈ H be a Hilbert calculus for L. For every finite set Γ ∪ {ϕ} of
L-formulas, Γ `H ϕ iff Γ `MGH

ϕ.

Proof. Suppose that Γ `H ϕ. By Theorem 14, we have `GH Γ⇒ ϕ. Theorem 15 implies
that `MGH

Γ⇒ ϕ. By definition, it follows that Γ `MGH
ϕ. The converse is similar.

Using Proposition 3, we also obtain a general decidability result:

Corollary 6 (Decidability). Given a Hilbert system H ∈ H and a finite set Γ ∪ {ϕ} of
formulas, it is decidable whether Γ `H ϕ or not.

Proof. Follows by Corollary 5 and Proposition 3.

Exploiting Step 1 and Step 2: Analyticity

After having established the connection between a PNmatrixMG and the sequent cal-
culus G, we can exploit this relationship to reason about the analyticity of G.

As already mentioned in Chapter 2, calculi with the (global) subformula property
are often referred to as analytic (see, e.g. [144]). This means that a sequent calculus
is analytic if, whenever a sequent s is provable in it, it can also be proven using only
the “syntactic material available within s”, where by “material” we mean all subformulas
occurring in s (denoted by sub[s]). However, weaker variants of the subformula property
have also been considered in the literature, especially in paraconsistent and modal logics,
e.g., [13, 116, 38, 39]. Here we use the following notion of Θ-analyticity:

Definition 46. Let Θ ⊆ U∗L and W be a set of L-formulas. Then

Θ(W) = {?̄ψ | ?̄ ∈ Θ, ψ ∈ W}

Let G be a sequent calculus for a propositional language L.

1. Given an L-sequent s and a set W of L-formulas, we write `WG s if there exists a
proof of s in G consisting only of (L-sequents that consist of) formulas from W.

2. Given a set Θ ⊆ U∗L, G is called Θ-analytic if `G s implies `Θ(sub[s])
G s for every

sequent s.

122

We call a sequent calculus G thus Θ-analytic when for every provable sequent s, we
can find a proof where the “material” occurring in its proof consists only of subformulas
and their possible extensions with sequences of unary connectives contained in Θ. In
this regard, our notion of analyticity is closely related to the notion of bounded proof
property (defined in [38, 39] in the context of modal logic). This property states that
the complexity of formulas appearing in s determines the bound on the complexity of
formulas constructed from the subformulas of s that are allowed to appear in the proof.

The reasoning about the ΘH -analyticity of the sequent calculus GH amounts to
the check of a decidable sufficient condition of the associated PNmatrix MGH , namely
whether the PNmatrixMGH is in fact an Nmatrix, i.e., if its set of truth values VM is non-
empty and ♥M(x1, . . . , xn) 6= ∅ for every n-ary connective ♥ of L and x1, . . . , xn ∈ VM.

Theorem 16. Let G be a Θ-simple sequent calculus. If MG is an Nmatrix then G is
Θ-analytic.

Proof. Suppose that MG is an Nmatrix and 6`Θ(sub[s0])
G s0 for some L-sequent s0. We

show that 6`G s0. By Theorem 15, it suffices to show that there exists anMG-valuation
for L that does not satisfy s0. Let W = Θ(sub[s0]). It is a standard matter to extend s0

into a “maximal” L-sequent s∗ that satisfies the following conditions:

1. s∗ consists of labelled L-formulas of the form b : ψ and ψ ∈ W.
2. 6`WG s∗.
3. For every labelled L-formula b : ψ with ψ ∈ W, if b : ψ /∈ s∗ then `WG s∗ ∪ {b : ψ}.

As in the proof of Theorem 15, the availability of the rules (cut) and (id) implies that
for every ψ ∈ W there is a unique b ∈ {t, f} such that b : ψ ∈ s∗. Next, we define a
function v : L → FΘ by induction on the structure of formulas. Suppose that v(ϕ) is
defined for every proper subformula ϕ of an L-formula ψ. We define v(ψ) as follows.
First, if ψ ∈ sub[s0] then for every ?̄ ∈ Θ: v(ψ)?̄ = b iff b : ?̄ψ /∈ s∗. Otherwise, if ψ
is an atomic formula, v(ψ) is arbitrarily chosen to be one of the truth values in VMG

.
Otherwise, ψ = ♥(ψ1, . . . , ψn) is a compound formula, and in this case v(ψ) is arbitrarily
chosen to be one of the truth values in ♥MG

(v(ψ1), . . . , v(ψn)). Note that the fact that
MG is an Nmatrix guarantees that these arbitrary choices are always possible. To show
that v is anMG-valuation, we use the following properties:

(*) Let σ be an L-substitution such that σ(p1) ∈ sub[s0]. If v(σ(p1)) satisfies an L-
sequent of the form {b : ?̄p1} where ?̄ ∈ Θ then `WG s∗ ∪ {b : ?̄σ(p1)}.
Proof: Suppose that v(σ(p1)) satisfies {b : ?̄p1}. Thus v(σ(p1))?̄ = b. Since
σ(p1) ∈ sub[s0], we have that b : ?̄σ(p1) /∈ s∗. The maximality of s∗ ensures that
`WG s∗ ∪ {b : ?̄σ(p1)}.

(**) Let σ be an L-substitution such that {σ(p1), σ(p2)} ⊆ sub[s0]. If 〈v(σ(p1)), v(σ(p2))〉
satisfies an L-sequent q of the form {b : ?̄pi} where ?̄ ∈ Θ and i ∈ {1, 2} then
`WG s∗ ∪ σ(q).
Proof: Suppose that 〈v(σ(p1)), v(σ(p2))〉 satisfies q. Thus v(σ(pi))

?̄ = b. Since

123

σ(pi) ∈ sub[s0], we have that b : ?̄σ(pi) /∈ s∗. The maximality of s∗ ensures that
`WG s∗ ∪ σ(q).

We first prove that for every L-formula ψ, we have v(ψ) ∈ VMG
. If ψ /∈ sub[s0], this holds

by definition. Suppose that ψ ∈ sub[s0]. We show that v(ψ) respects all the Θ-unary
rules of G. Let r = Q/{b : ?̄p1} be such a Θ-unary rule of G. Suppose that v(ψ) satisfies
every q ∈ Q. Let σ be any L-substitution assigning ψ to p1. By (*), `WG s∗ ∪ σ(q) for
every q ∈ Q. By applying r we obtain `WG s∗ ∪ {b : ?̄ψ}. Hence v(ψ) satisfies {b : ?̄p1}.
Thus, {b : ?̄ψ} /∈ s∗ and so v(ψ)?̄ = b. Next, we show that v respects the truth tables of
MG.

1. Let ? ∈ UL and ψ ∈ L. We show that v(?ψ) ∈ ?MG
(v(ψ)). This holds by definition

when ?ψ /∈ sub[s0]. Suppose now that ?ψ ∈ sub[s0] (and so ψ ∈ sub[s0] as well).
By the definition ofMG, it suffices to show that v(?ψ)?̄ = v(ψ)?̄? whenever ?̄? ∈ Θ.
This follows directly from the definition of v.

2. Let � ∈ {∧,∨,⊃} and ψ1, ψ2 ∈ L. We show that v(ψ1 � ψ2) ∈ �MG
(v(ψ1), v(ψ2)).

This holds by definition when ψ1 � ψ2 /∈ sub[s0]. Suppose now that ψ1 � ψ2 ∈
sub[s0] (and so ψ1 and ψ2 are in sub[s0] as well). We prove (i) v(ψ1 � ψ2)ε ∈
�MCl+

(v(ψ1)ε, v(ψ2)ε) and (ii) v(ψ1 � ψ2)?̄ = b for every Θ-binary rule r = Q/{b :
?̄(p1�p2)} of G for which 〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q. (i) is straightforward.
For (ii), let r = Q/{b : ?̄(p1 � p2)} be a Θ-binary rule of G such that 〈v(ψ1), v(ψ2)〉
satisfies every q ∈ Q. Consider an L-substitution σ for which σ(p1) = ψ1 and
σ(p2) = ψ2. By (**), for every q ∈ Q we have `WG s∗ ∪ σ(q). By applying r we
obtain `WG s∗∪{b : ?̄(ψ1 �ψ2)}. Thus, {b : ?̄(ψ1 �ψ2)} /∈ s∗ and so v(ψ1 �ψ2)?̄ = b.

Finally, it is immediate to see that v does not satisfy s0. Indeed, every b : ψ ∈ s0 occurs
also in s∗, and thus v(ψ)ε 6= b.

Note that the calculus H0 from Example 32 is Θ-analytic, because its associated
PNmatrix is an Nmatrix. In the following example, we show a ΘH -simple calculus whose
extracted semantics is not an Nmatrix:

Example 34. Let H1 be the calculus obtained by extending HCL+ by the axioms be-
low (see Table 6.2) and GH1 be the sequent calculus obtained by adding to LK+ their
corresponding rules:

(n1) p1 ∨ ¬p1 {{f : p1}}/{t : ¬p1}
(b) p1 ⊃ (¬p1 ⊃ (◦p1 ⊃ p2)) {{t : p1}, {t : ¬p1}}/{f : ◦p1}
(k) ◦ p1 ∨ (p1 ∧ ¬p1) {{f : p1}}/{t : ◦p1}, {{f : ¬p1}}/{t : ◦p1}
(c) ¬¬p1 ⊃ p1 {{f : ¬¬p1}}/{f : p1}

(o1
∧) ◦ p1 ⊃ ◦(p1 ∧ p2) {{t : ◦p1}}/{t : ◦(p1 ∧ p2)}

(or
∧) (¬p1 ∨ ¬p2) ⊃ ¬(p1 ∧ p2) {{t : ¬p1}}/{t : ¬(p1 ∧ p2)},

{{t : ¬p2}}/{t : ¬(p1 ∧ p2)}

We construct the PNmatrixM =MGH1
. The set of truth values forM is:

124

VM = {〈ε : f,¬ : t, ◦ : t,¬¬ : f〉, 〈ε : f,¬ : t, ◦ : t,¬¬ : t〉, 〈ε : t,¬ : f, ◦ : t,¬¬ : t〉,
〈ε : t,¬ : t, ◦ : f,¬¬ : t〉}

and the set of designated truth values is:

DM = {〈ε : t,¬ : f, ◦ : t,¬¬ : t〉, 〈ε : t,¬ : t, ◦ : f,¬¬ : t〉}
We only show the truth tables for the unary connective ¬ and the binary connective

∧ (we write below 〈u, v, w, x〉 instead of 〈ε : u,¬ : v, ◦ : w,¬¬ : x〉; FM = VM \ DM):

¬M
〈f, t, t, f〉 {〈t, f, t, t〉}
〈f, t, t, t〉 {〈t, t, f, t〉}
〈t, f, t, t〉 {〈f, t, t, f〉, 〈f, t, t, t〉}
〈t, t, f, t〉 {〈t, f, t, t〉}

∧M 〈f, t, t, f〉 〈f, t, t, t〉 〈t, f, t, t〉 〈t, t, f, t〉
〈f, t, t, f〉 FM FM FM FM
〈f, t, t, t〉 FM FM FM FM
〈t, f, t, t〉 FM FM {〈t, f, t, t〉} ∅
〈t, t, f, t〉 FM FM {〈t, t, f, t〉} {〈t, t, f, t〉}

Note that the truth table for ∧ contains an empty spot in the last row. Thus, M is
not an Nmatrix.

Theorem 16 does not apply to Θ-simple calculi G whose associated matrix MG is
not an Nmatrix. However, we can recover analyticity for such calculi: first, we transform
MG into a finite family of Nmatrices satisfying the condition of a simple refinement (see
definition below). Then, for every PNmatrix of this family, we can use the algorithm
of [14] to construct an analytic sequent calculus, hence obtaining a family of analytic
calculi equivalent to G.

Definition 47 ([23]). Let M and N be PNmatrices for L. We say that N is a simple
refinement ofM if VN ⊆ VM, DN = DM ∩ VN , and ♥N (x1, . . . , xn) ⊆ ♥M(x1, . . . , xn)
for every n-ary connective ♥ of L and x1, . . . , xn ∈ VN .

Theorem 17. For every finite PNmatrixM for L, there is an algorithm for constructing
M1 . . .Mn, such that:

1. M1 . . .Mn are finite simple refinements ofM that are Nmatrices, and
2. `M=

⋂
i=1,...,n `Mi .

Proof. LetM be a PNmatrix for L. ChooseM1, . . . ,Mn to be all simple refinements of
M which are Nmatrices. Based on the results in [23], we show that `M=

⋂
i=1,...,n `Mi .

“⇒”: By Proposition 4.8 in [23], `M⊆`N for every simple refinement N of M.
Therefore, `M⊆

⋂
i=1,...,n `Mi .

125

“⇐”: Suppose that 6`M s. Thus v 6|=M s for someM-valuation v for L. Theorem 4.12
in [23] ensures that there exists someMi, such that v is anMi-valuation. The fact that
v 6|=M s easily entails that v 6|=Mi s, and so 6`Mi s.

After constructing a finite family of Nmatrices, the method of [14] can be applied
to produce a cut-free sequent calculus GM. This method works for any Nmatrix M
whose set of designated truth values DM is a non-empty proper subset of the set of its
truth values VM, provided that its language satisfies the following (slightly reformulated)
condition:

Definition 48. LetM be an Nmatrix for L. We say that L is sufficiently expressive for
M if for any x ∈ VM, there exists a set Sx of L-sequents, each of which has the form
{b : ψ}, for some b ∈ {f, t} and ψ ∈ L in which p1 is the only atomic variable, such that
the following condition holds:

For anyM-valuation v for L and L-substitution σ, v(σ(p1)) = x iff v satisfies
every L-sequent in σ(Sx) with respect toM.

Corollary 7. For any H ∈ H, there is an algorithm for constructing a family of ΘH-
analytic sequent calculi FH , such that for every finite set Γ ∪ {ϕ} of formulas: Γ `H ϕ
iff `G Γ⇒ ϕ for every G ∈ FH .

Proof. We start by constructing MGH . If DMGH
= ∅ or DMGH

= VMGH
, then MGH

has a trivial corresponding ΘH -analytic calculus. For the rest of the cases, we can
apply Theorem 17 to obtain an equivalent family of Nmatrices. Next we show that L is
sufficiently expressive for any simple refinement ofMGH . Indeed, for x ∈ VMGH

, define
Sx = {xε : p1}∪{x?̄ : ?̄p1 | ?̄ ∈ ΘH}. LetM be a simple refinement ofMGH and let v be
anM-valuation for L. The required condition is met by the fact that for every ?̄ ∈ ΘH

and ψ ∈ L, v(?̄ψ)ε = v(ψ)?̄. By the method of [14], we obtain a family of corresponding
cut-free calculi. The forms of the Sx-s guarantee that the rules of the obtained calculi
are ΘH -simple, which together with their cut-admissiblity implies ΘH -analyticity.

6.6 A Special Case

The procedure described in Section 6.4 and Section 6.5 constructs a sequent calculus
and a PNmatrix for any Hilbert calculus H ∈ H. In this section we consider a subclass
HR ⊆ H obtained by restricting the sequences of the unary connectives that can occur in
an axiom, see the grammar given in Definition 49 below. The subclass contains infinitely
many logics, including classical propositional logic or paraconsistent logics belonging to
the family of C-systems.

The restriction of the grammar does not affect the algorithm that transforms any H ∈
HR into an equivalent sequent calculus. But step 2 of our general procedure changes, since
the construction of the associated PNmatrix will be slightly different. The restriction
has the following advantages to its generalized version:

126

• The PNmatrices constructed for the sequent calculi generated in step 1 will be
smaller and, thus, more readable.

• In the restricted case, we are able to prove that the PNmatrix is an Nmatrix iff its
associated sequent calculus is “analytic” (see Theorem 19).

Section 6.6.1 contains an implementation of this special case for Step 1 and Step 2
and a description of the tool Paralyzer.

Let us begin with the definition of the restricted grammar defining the class HR.
Note that we only allow two new unary connectives in UL:

Definition 49. Let UL = {?1, ?2}. AxRL is the set of L-formulas that:

1. are generated by the following grammar (I is the initial variable):

I = R1 | R2 | R3 for � ∈ {∧,∨,⊃}, ?, . ∈ UL
R1 = (R1 � P1) | (P1 �R1) | ?p1 P1 = (P1 � P1) | ?p1 | p1 | p2

R2 = (R2 � P2) | (P2 �R2) | ?(p1 � p2) P2 = (P2 � P2) | ?p1 | p1 | ?p2 | p2

R3 = (R3 � P1) | (P1 �R3) | ? . p1

2. and satisfy the following conditions: for some subformula ϕ = ?p1 of an L-formula
arising from the start symbol R1 (for the subformula ϕ = ?(p1 �p2) of an L-formula
arising from R2 and for the subformula ϕ = ? . p1 of an L-formula arising from R3,
resp.): ϕ must not be contained
(a) in a positively occurring (sub)formula of the form ψ1 ∧ ψ2, and
(b) in a negatively occurring (sub)formula of the form ψ1 ∨ ψ2 or ψ1 ⊃ ψ2.

The grammar above is that in Definition 39 with the restriction that there is no nesting
of unary connectives in the premises, and the maximum nesting of unary connectives is
one when binding a formula of the form (p1�p2) and two, otherwise, see also the following
example.

Example 35. Consider the axioms from Example 26.

p1 ∨ ¬p1 (n1)

◦p1 ⊃ ◦¬p1 (a¬)

¬ ◦ p1 ⊃ (p1 ∧ ¬p1) (i)

¬(p1 ∨ p2) ⊃ (¬p1 ∧ ¬p2) (ol
∨)

(¬ ◦ p1 ∧ ¬p2) ∨ (¬ ◦ p2 ∧ ¬p1)) ⊃ ¬ ◦ (p1 ∨ p2) (ir∨)

The axioms (n1), (a¬), (i) and (ol
∨) are within AxRL . The axiom (ir∨) is not covered by

the restricted grammar (it is within AxL, though).

As a consequence, we do not need the set Θ anymore and instead distinguish between
three types of rules that are generated by our algorithm in Theorem 14 (the definition is
contained in Table 6.6).

127

Rule Application form

UL-unary-one P/{t : ?p1}
Γ,�1ϕ⇒ ∆ . . . Γ,�nϕ⇒ ∆ Γ⇒ •1ϕ,∆ . . . Γ⇒ •mϕ,∆

Γ⇒ ?ϕ,∆

P/{f : ?p1}
Γ,�1ϕ⇒ ∆ . . . Γ,�nϕ⇒ ∆ Γ⇒ •1ϕ,∆ . . . Γ⇒ •mϕ,∆

Γ, ?ϕ⇒ ∆

where P = {{f : �1p1}, . . . , {f : �np1}, {t : •1p1}, . . . , {t : •mp1}}

UL-unary-two P/{t : ? . p1}
Γ,�1ϕ⇒ ∆ . . . Γ,�nϕ⇒ ∆ Γ⇒ •1ϕ,∆ . . . Γ⇒ •mϕ,∆

Γ⇒ ? . ϕ,∆

P/{f : ? . p1}
Γ,�1ϕ⇒ ∆ . . . Γ,�nϕ⇒ ∆ Γ⇒ •1ϕ,∆ . . . Γ⇒ •mϕ,∆

Γ, ? . ϕ⇒ ∆

where P = {{f : �1p1}, . . . , {f : �np1}, {t : •1p1}, . . . , {t : •mp1}}

UL-binary Q/{t : ?(p1 � p2)}

Γ,�1ϕi1 ⇒ ∆ . . . Γ,�nϕin ⇒ ∆
Γ⇒ •1ϕj1 ,∆ . . . Γ⇒ •mϕjm ,∆

Γ⇒ ?(ϕ1 � ϕ2),∆

Q/{f : ?(p1 � p2)}

Γ,�1ϕi1 ⇒ ∆ . . . Γ,�nϕin ⇒ ∆
Γ⇒ •1ϕj1 ,∆ . . . Γ⇒ •mϕjm ,∆

Γ, ?(ϕ1 � ϕ2)⇒ ∆

where Q = {{f : �1pi1}, . . . , {f : �npin}, {t : •1pj1}, . . . , {t : •mpjm}}
Table 6.6: The general form of our rules (b ∈ {f, t}, ?, . ∈ UL, �i, •j ∈ UL ∪ {ε},
� ∈ {∧,∨,⊃}, i1, . . . , in, j1, . . . , jm ∈ {1, 2})

Definition 50. An L-rule Q/s is called UL-simple if it is either a UL-unary-one, UL-
unary-two, or a UL-binary rule. A sequent calculus for L is called UL-simple if it is
obtained by augmenting LK+ with a finite set of UL-simple L-rules. We shall omit UL
when it is clear from the context.

Definition 51. HR is the family of Hilbert calculi obtained by extending HCL+ with
any finite set of axioms from AxRL for some language L. HR is properly contained in H.

HR also includes well-known Hilbert calculi, e.g.:

• the standard calculus for (propositional) classical logic Cl (that is obtained by
adding the axioms (n1) and (n2) from Table 6.2, page 104 to HCL+).
• the Hilbert calculi for the logics B, BK, bC, Ci or C1 from page 104.

128

• the Hilbert calculi for other C-systems that are defined by adding to HCL+ the
axioms (b) and (n1), as well as different subsets of the axioms (r�), (k), (i), (o1

�),
(o2
�), (a¬), (e), (a�) and (c) from Table 6.2.

In contrast to H, the family HR does for example not contain

• the Hilbert calculus for the logic LFI1 from page 104,
• the Hilbert calculi for other C-systems that are defined by adding toHCL+ (amongst

others) the axioms (il�) or (ir�) of Table 6.2.
• the Hilbert calculi for the logics L2n+2 for each n ≥ 0 discussed in [106].

Corollary 8. Let H ∈ HR be a Hilbert calculus for L. The algorithm in Theorem 14
constructs an equivalent UL-simple sequent calculus GH for L.

We now show how a PNmatrix MG is extracted from a UL-simple sequent calculus
G. The main difference between the general and the restricted case is the information
that is coded in a truth value: In the general case, a truth value consists of functions of
all elements of Θ, while in the restricted case, we take the elements of UL ∪ {ε}, which is
actually a subset of Θ. The truth values thus do not say anything about the sequences
of the unary connectives, which makes them smaller in size. We use FUL to denote the
set of functions {UL ∪ {ε}} → {f, t}.

Example 36. Let H ∈ HR be the Hilbert system defined by extending HCL+ with the
axioms (n1) p1 ∨¬p1, (c) ¬¬p1 ⊃ p1 and (ol

∧) ¬(p1 ∧ p2) ⊃ (¬p1 ∨¬p2) from Table 6.2.
Then UL = {¬} and Θ = {ε,¬,¬¬}.

FΘ consists of truth values of the form 〈ε : b,¬ : b,¬¬ : b〉 whereas FUL consists of
truth values of the form 〈ε : b,¬ : b〉.

We now show the algorithm to extract a PNmatrix out of any given UL-simple sequent
calculus. It is slightly different from the one for the general case, based on the following
observations:

• We only consider those truth values from all the possible functions in FUL that
respect the UL-unary-one rules (cf. Table 6.6).
• The truth tables of the unary connectives are constructed using the UL-unary-two

rules (cf. Table 6.6).
• UL-binary rules (cf. Table 6.6) determine the truth tables of the binary connectives.

Note that the notions for satisfaction of an L-sequent and respecting a Θ-unary rule
from Definition 44 are the same for the restricted case.

Definition 52. Given a UL-simple sequent calculus G, the PNmatrixMG is defined as
follows:

• The set of truth values VMG
contains all functions in FUL that respect all UL-unary-

one rules of G.
• The set of designated truth values DMG

is {u ∈ VMG
| uε = t}.

129

• For any unary connective ? ∈ UL, the truth table for ? is given by:

1. ?MG
(u1) = {u ∈ VMG

| uε = u?1} and
2. for every UL-unary-two rule of G of the form Q/{b : . ? p1}, if u1 satisfies

every q ∈ Q then u. = b.

• For � ∈ {∧,∨,⊃} and u1, u2 ∈ VMG
, �MG

(u1, u2) is the set of all u ∈ VMG
satisfy-

ing:

1. uε ∈ �MCl+
(uε1, u

ε
2) (where �MCl+

is the classical truth table of �; see Exam-
ple 24).

2. For every UL-binary rule of G of the form Q/{b : ?(p1�p2)}, if 〈u1, u2〉 satisfies
every q ∈ Q then u? = b.

Example 37. Consider the calculus HR that extends HCL+ with the three axioms from
Example 36, with UL = {¬}. The corresponding UL-simple sequent calculus GHR has one
unary-one rule

ru1 = {{f : p1}}/{t : ¬p1}
one unary-two rule

ru2 = {{f : p1}}/{f : ¬¬p1}
and one binary rule

rb = {{f : ¬p1}, {f : ¬p2}}/{f : ¬(p1 ∧ p2)}

We construct the PNmatrix M = MGHR
according to Definition 52 and start by

listing FUL :

FUL = {〈ε : f,¬ : f〉, 〈ε : f,¬ : t〉, 〈ε : t,¬ : f〉, 〈ε : t,¬ : t〉}
We first determine the set VM of truth values that respect the unary-one rules of GHR .

The only relevant rule in this case is ru1 . Since u ∈ VM respects ru1 iff

u¬ = t whenever uε = f

we delete the value 〈ε : f,¬ : f〉 and obtain:

VM = {〈ε : f,¬ : t〉, 〈ε : t,¬ : f〉, 〈ε : t,¬ : t〉}

The set of designated truth values is:

DM = {〈ε : t,¬ : f〉, 〈ε : t,¬ : t〉}

Next we define the truth table for ¬. For every u1 ∈ VM, we take all u ∈ VM that
(1) satisfy the condition

uε = u¬1

and (2) respect the unary-two rule ru2. For instance, let u1 = 〈ε : f,¬ : t〉. The only
elements satisfying condition (1) are

{〈ε : t,¬ : f〉, 〈ε : t,¬ : t〉}

130

where 〈ε : t,¬ : t〉 does not respect ru2 and is hence removed. The truth table for ¬ is
then constructed as follows (we write below 〈x, y〉 instead of 〈ε : x,¬ : y〉):

¬M
〈f, t〉 {〈t, f〉, 〈t, t〉}
〈t, f〉 {〈f, t〉}
〈t, t〉 {〈t, f〉, 〈t, t〉}

−→(ru2)

¬M
〈f, t〉 {〈t, f〉}
〈t, f〉 {〈f, t〉}
〈t, t〉 {〈t, f〉, 〈t, t〉}

Finally, we obtain the truth tables for the binary connectives which must meet the
requirements arising (1) from the classical truth tables and (2) from the binary rules of
GHR . We show the case of ∧, as rb involves ∧. Condition (1) gives us the following truth
table for ∧:

∧M 〈f, t〉 〈t, f〉 〈t, t〉
〈f, t〉 {〈f, t〉} {〈f, t〉} {〈f, t〉}
〈t, f〉 {〈f, t〉} {〈t, f〉, 〈t, t〉} {〈t, f〉, 〈t, t〉}
〈t, t〉 {〈f, t〉} {〈t, f〉, 〈t, t〉} {〈t, f〉, 〈t, t〉}

By condition (2), rb imposes the requirement that for every u ∈ ∧M(u1, u2) we have

u¬ = f whenever u¬1 = f and u¬2 = f

Thus we obtain the following truth table for ∧:

∧M 〈f, t〉 〈t, f〉 〈t, t〉
〈f, t〉 {〈f, t〉} {〈f, t〉} {〈f, t〉}
〈t, f〉 {〈f, t〉} {〈t, f〉} {〈t, f〉, 〈t, t〉}
〈t, t〉 {〈f, t〉} {〈t, f〉, 〈t, t〉} {〈t, f〉, 〈t, t〉}

As comparison to the matrix that is produced in the restricted case, in the following
example we show the PNmatrix that is extracted for the same calculus by the more
general procedure of Section 6.5:

Example 38. Let Θ = {ε,¬,¬¬}. We show the PNmatrixMΘ for the sequent calculus
GHR according to Definition 37.

The set of truth values (respecting the Θ-unary rules ru1 and ru2) is

VMΘ
= {〈ε : f,¬ : t,¬¬ : f〉, 〈ε : t,¬ : f,¬¬ : f〉, 〈ε : t,¬ : f,¬¬ : t〉,

〈ε : t,¬ : t,¬¬ : f〉, 〈ε : t,¬ : t,¬¬ : t〉}

The set of designated truth values is thus:

DMΘ
= {〈ε : t,¬ : f,¬¬ : f〉, 〈ε : t,¬ : f,¬¬ : t〉, 〈ε : t,¬ : t,¬¬ : f〉, 〈ε : t,¬ : t,¬¬ : t〉}

The truth table for ¬ is as follows (we write below 〈x, y, z〉 instead of 〈ε : x,¬ : y,¬¬ :
z〉):

131

¬MΘ

〈f, t, f〉 {〈t, f, f〉, 〈t, f, t〉}
〈t, f, f〉 ∅
〈t, f, t〉 {〈f, t, f〉}
〈t, t, f〉 {〈t, f, f〉, 〈t, f, t〉}
〈t, t, t〉 {〈t, t, f〉, 〈t, t, t〉}

and the truth table for ∧ (respecting the Θ-binary rule rb):

∧MΘ
〈f, t, f〉 〈t, f, f〉 〈t, f, t〉 〈t, t, f〉 〈t, t, t〉

〈f, t, f〉 〈f, t, f〉 〈f, t, f〉 〈f, t, f〉 〈f, t, f〉 〈f, t, f〉
〈t, f, f〉 〈f, t, f〉 {〈t, f, f〉, 〈t, f, t〉} {〈t, f, f〉, 〈t, f, t〉} DΘ DΘ

〈t, f, t〉 〈f, t, f〉 {〈t, f, f〉, 〈t, f, t〉} {〈t, f, f〉, 〈t, f, t〉} DΘ DΘ

〈t, t, f〉 〈f, t, f〉 DΘ DΘ DΘ DΘ

〈t, t, t〉 〈f, t, f〉 DΘ DΘ DΘ DΘ

It can easily be seen that the PNmatrix M from Example 37 is easier to read and
smaller than the PNmatrixMΘ. Note that, whileM is in fact an Nmatrix, the PNmatrix
MΘ contains an empty spot in the truth table of the connective ¬.

The soundness and completeness proof in the restricted case is similar to the sound-
ness and completeness proof of the general case. Below we only give the statement of
the theorem; the proof can be found in Appendix B.

The main difference from the general to the restricted case is that in the latter we can
prove that a PNmatrix is an Nmatrix iff it is UL-analytic (recall Theorem 16, where we
only prove that if the PNmatrix is an Nmatrix, it is Θ-analytic). The proof for analyticity
in the restricted case requires a more complicated definition of (UL-)analyticity, which is
reflected in the introduction of the two sets U−L (W) and U+

L (W) and a weaker notion of
“satisfaction”.

We now denote by W an arbitrary set of LU -formulas closed under subformulas.
Moreover, an L-sequent s is called a W-sequent if sub[s] ⊆ W. The set U−L (W) contains
all formulas of W except formulas with an outermost unary connective that are not a
proper subformula of another formula inW. The set U+

L (W) contains the formulas ofW
and all formulas of U−L (W) extended with the unary connectives of UL. U+

L (W) hence
contains the “extended material” we will use to define our notion of UL-analyticity.

Definition 53. The sets U+
L (W) and U−L (W) are defined as follows:

U−L (W) =W \ {?ψ ∈ W | ? ∈ UL, ?ψ is not a proper subformula of a formula in W}
U+
L (W) =W ∪ {?ψ | ? ∈ UL, ψ ∈ U−L (W)}
A U−L (W)-valuation v : U−L (W)→ FUL w-satisfies a U+

L (W)-sequent s if there exists
some labelled formula b : ψ ∈ s, such that either

(i) ψ does not have the form ?ϕ and v(ψ)ε = b, or
(ii) ψ = ?ϕ (for some ? ∈ UL and ϕ ∈ U−L (W)) and v(ϕ)? = b.

132

Note that ψ ∈ U−L (W) whenever ?ψ ∈ U+
L (W) for some ? ∈ UL.

Example 39. For UL = {¬} and W = {p1, p2,¬p1,¬p2, p1 ∨ p2,¬p1 ∨ p2,¬(p1 ∨ p2)},
we have

• U−L (W) = {p1, p2,¬p1, p1 ∨ p2,¬p1 ∨ p2}, and
• U+

L (W) =W ∪ {¬¬p1,¬(¬p1 ∨ p2)}.

We can now prove soundness and completeness of our calculi (the proofs can be found
in Appendix B).

Theorem 18 (Soundness and Completeness). Let s0 be a W-sequent and G be a UL-
simple sequent calculus for L. Then, `U

+
L (W)

G s0 (cf. Definition 46) iff everyMG-U−L (W)-
valuation w-satisfies s0.

Corollary 9. For every L-sequent s, `G s iff `MG
s.

We now define UL-analyticity by using the set UL: we call a sequent calculus UL-
analytic when for every provable sequent s, we can find a proof where the “material”
occurring in its proofs consists only of subformulas of the set U+

L :

Definition 54. A UL-simple calculus G is UL-analytic if for every L-sequent s: `G s

implies that `U
+
L (sub[s])

G s.

Moreover, we can now show that we can useMG to check whether G is UL-analytic
(and vice versa; for the proof see Appendix B):

Theorem 19. A UL-simple calculus G is UL-analytic iffMG is an Nmatrix.

Recall the calculus GHR and its PNmatrixM from Example 37. Since the PNmatrix
M does not contain an empty set in its truth tables for the connectives (and is an
Nmatrix), GHR is UL-analytic by Theorem 19. The PNmatrix MΘ for GHR extracted
by the procedure in the general case (see Example 38), however contains an empty set in
the truth table for the connective ¬. The calculus GHR is thus an example of an analytic
calculus for which the general procedure does not extract an Nmatrix. Note that this
does not contradict our result for the general case, since we show in Theorem 16 only
that if the extracted PNmatrix is an Nmatrix, the corresponding sequent calculus is Θ-
analytic. We leave the further analysis of this example and its implication as a question
for future research.

Finally, we show the PNmatrix generated in the more restricted case for the calculus
H1 of Example 34:

Example 40. Let H1 be the calculus obtained by extending HCL+ with the axioms of
Example 34, namely (n1), (b), (k), (c), (o1

∧) and (or
∧). Let GH1 be the sequent calculus

obtained by extending LK+ with the following rules corresponding to the axioms:

133

(n1) {{f : p1}}/{t : ¬p1}
(b) {{t : p1}, {t : ¬p1}}/{f : ◦p1}
(k) {{f : p1}}/{t : ◦p1}, {{f : ¬p1}}/{t : ◦p1}
(c) {{f : ¬¬p1}}/{f : p1}

(o1
∧) {{t : ◦p1}}/{t : ◦(p1 ∧ p2)}

(or
∧) {{t : ¬p1}}/{t : ¬(p1 ∧ p2)}, {{t : ¬p2}}/{t : ¬(p1 ∧ p2)}

Let M′ = M′GH1
be the PNmatrix obtained according to Definition 52. The set of

truth values forM′ is

VM = {〈ε : f,¬ : t, ◦ : t〉, 〈ε : t,¬ : f, ◦ : t〉, 〈ε : t,¬ : t, ◦ : f〉}

and the set of designated truth values:

DM = {〈ε : t,¬ : f, ◦ : t〉, 〈ε : t,¬ : t, ◦ : f〉}

Note that in comparison to the PNmatrix M of Example 34, each truth value is
smaller in size and the set of truth values contains less elements. We now only show the
truth table for the unary connective ¬ and the binary connective ∧ forM′:

¬M′
〈ε : f,¬ : t, ◦ : t〉 {〈ε : t,¬ : f, ◦ : t〉, 〈ε : t,¬ : t, ◦ : f〉}
〈ε : t,¬ : f, ◦ : t〉 {〈ε : f,¬ : t, ◦ : t〉}
〈ε : t,¬ : t, ◦ : f〉 {〈ε : t,¬ : f, ◦ : t〉, 〈ε : t,¬ : t, ◦ : f〉}

∧M′ 〈ε : f,¬ : t, ◦ : t〉 〈ε : t,¬ : f, ◦ : t〉 〈ε : t,¬ : t, ◦ : f〉
〈ε : f,¬ : t, ◦ : t〉 {〈ε : f,¬ : t, ◦ : t〉} {〈ε : f,¬ : t, ◦ : t〉} {〈ε : f,¬ : t, ◦ : t〉}
〈ε : t,¬ : f, ◦ : t〉 {〈ε : f,¬ : t, ◦ : t〉} {〈ε : t,¬ : f, ◦ : t〉} ∅
〈ε : t,¬ : t, ◦ : f〉 {〈ε : f,¬ : t, ◦ : t〉} {〈ε : t,¬ : t, ◦ : t〉} {〈ε : t,¬ : t, ◦ : f〉}

Note that the truth table for the binary connective ∧ contains an empty set. Hence,
by Theorem 19, the sequent calculus H1 is not UL-analytic.

We show an example of a sequent that can only be derived by a cut on a formula that
is not contained in U+

L . Consider the following L-sequent

s = {f : ◦p2, t : ¬p2, t : ◦p1}

and the sets U−L (sub[s]) = {p1, p2} and U+
L (sub[s]) = {p1, p2, ◦p1, ◦p2,¬p1,¬p2}. We

show that s can only be proven with an application of (cut) on a formula that is not
contained in U+

L (sub[s]). A derivation with (cut) is as follows:

134

{f : p2, t : ◦p1, t : p2}
{f : p1, f : p2, t : p1}

(t : ◦){f : p2, t : ◦p1, t : p1}
(t : ∧){f : p2, t : ◦p1, t : ψ ∧ p1}

{f : p2, f : ¬p1, t : ¬p1}
(t : ◦){f : p2, t : ◦p1, t : ¬p1}

(t : ¬∧){f : p2, t : ◦p1, t : ¬(ψ ∧ p1)}
(f : ◦)

(∗){f : ◦(p2 ∧ p1), f : p2, t : ◦p1}

{f : p2, t : p2, t : ◦p1}

{f : ¬p2, t : ¬p2}
(t : ◦){t : ¬p2, t : ◦p2}

(t : ◦∧){t : ¬p2, t : ◦(p2 ∧ p1)}

... (∗)
{f : ◦(p2 ∧ p1), f : p2, t : ◦p1}

(cut){f : p2, t : ¬p2, t : ◦p1}
(f : ◦){f : ◦p2, f : p2, t : ◦p1}

(t : ¬){f : ◦p2, t : ¬p2, t : ◦p1}

Note that the cut formula ◦(p2 ∧ p1) is not contained in U+
L (sub[s]).

6.6.1 Tool: Paralyzer

Paralyzer (PARAconsistent logics anaLYZER) implements the procedure for the re-
stricted case introduced in Section 6.6. It takes as input Hilbert axioms given by the
grammar in Definition 49 that are specified in the language of the positive fragment of
classical propositional logic extended by two new unary connectives. The axioms are
transformed into equivalent logical sequent rules and a finite-valued, non-deterministic
semantics is generated for the calculus obtained by adding these new rules to LK+.
Moreover, an encoding of the new calculus in Isabelle is produced, which can be used to
perform interactive proof search.

Paralyzer can handle the logics that are described by Hilbert calculi which belong
to the family HR. Examples are classical propositional logic Cl, but also paraconsistent
logics known as C-systems, e.g. B, BK, bC.

The system is available at

http://www.logic.at/tinc/webparalyzer/

Example

The main page of the tool is illustrated in Figure 6.1. The user enters (1) a set of axioms
and (2) the base calculus, i.e., the calculus that will be extended with the generated
rules. The default option for the base calculus is LK+, see Table 6.1. A second option is
the calculus for BK, see Table 6.4.

After the user has provided (1) and (2), the results (the sequent rules equivalent to
the input axioms, the associated semantics, and a link to the LATEX-paper containing the
Isabelle-encoding) are presented in a pop-up window, see Figure 6.2. Regarding the text
representation, note that G and D in the rules stand for multisets of formulas Γ and ∆.
In the PNmatrix, V_M indicates the possible set of truth values for the PNmatrix M. A
tuple 〈ϕ : x, ?1ϕ : y, ?2ϕ : z〉 with x, y, z ∈ {0, 1} is abbreviated as xyz. Note that we use
0 for f and 1 for t. Moreover, we only consider truth values with three elements in the

135

http://www.logic.at/tinc/webparalyzer/

Figure 6.1: Main screen of Paralyzer

Paralyzer output — i.e., even if we extend our language only by one connective ?1, we
have a second “dummy” connective ?2 in our Nmatrix. The generation of the (smaller)
Nmatrix with only one connective is in fact also implemented, but was abandoned due
to code maintenance reasons at a later stage.

When the program is started via the command-line, the user types compute, enters
the axiom and the base calculus (0 for LK+, 2 for Gk). The following is an example
output:

?- compute.
|: ’*2’ a -> ’*2’ (a & b); (’*1’ a v ’*1’ b) -> ’*1’(a & b);

’*1’(’*1’ a) -> a.
|: 2.

Equivalent Logical Rule(s):

G,*1 a =>D G =>a,D G =>b,D

G,*1 (a&b) =>D

G =>*1 a,D

G =>*1 (a&b),D

136

Figure 6.2: Dialog box – left: set of logical rules; right: semantics in form of a PNmatrix

G =>*1 b,D

G =>*1 (a&b),D

G,a =>D

G,*1*1 a =>D

V_M: {011,101,110}
== Truth Tables ==

And: Or: Implies:
for <011,011>: {011} for <011,011>: {011} for <011,011>: {101,110}
for <011,101>: {011} for <011,101>: {101,110} for <011,101>: {101,110}
for <011,110>: {011} for <011,110>: {101,110} for <011,110>: {101,110}
for <101,011>: {011} for <101,011>: {101,110} for <101,011>: {011}
for <101,101>: {101} for <101,101>: {101,110} for <101,101>: {101,110}
for <101,110>: {} for <101,110>: {101,110} for <101,110>: {101,110}
for <110,011>: {011} for <110,011>: {101,110} for <110,011>: {011}
for <110,101>: {110} for <110,101>: {101,110} for <110,101>: {101,110}

137

for <110,110>: {110} for <110,110>: {101,110} for <110,110>: {101,110}

*1: *2:
for <011>: {101} for <011>: {101,110}
for <101>: {011} for <101>: {101,110}
for <110>: {101,110} for <110>: {011}

Implementation Details

Paralyzer is implemented in Prolog. The implementation consists of 13 files and roughly
2700 lines of code (including documentation) and follows the general TINC-structure
described in Chapter 3 (recall Figure 3.5). The instantiation of the general TINC-
structure for Paralyzer is depicted in Figure 6.3.

Figure 6.3: Implementation details Paralyzer

Input and checkInput. The input for Paralyzer is a Hilbert axiom and the base
calculus, which are provided as parameters to the first component, checkInput.

The user can select the base calculus for the algorithm out of two options: the default
option LK+ (see Table 6.1) or the calculus Gk for BK, which is depicted in Table 6.4.
Note that if Gk is selected as base calculus, also the invertibility of the rules (◦ ⇒) and
(⇒ ◦) is exploited when computing the equivalent logical rules.

The syntax of the Hilbert axiom given as input is as follows:

• the letters a, b for (atomic) formulas
• logical connectives: & (and), v (or), -> (implication) and *1, *2 (unary connec-

tives)
• a semicolon ; to concatenate axioms

axioms2tex implements a syntactic check by using a definite clause grammar to de-
termine whether the input formula only contains axioms that fall into the grammar in
Definition 49.1. axiomCheckConditions determines whether the axioms obey the condi-
tions regarding positively and negatively occurring subformulas in Definition 49.2.

138

computeRules and exploit. If the input formula provided by the user passes all
syntactic checks it can be processed by the second component computeRules, which
contains the implementation of the algorithm introduced in Theorem 14. axioms2rules
transforms the axioms given as input into equivalent sequent rules. Its core is the method
axiom2logical:

Code Example 5. In Paralyzer, the central point to start the transformation procedure
is axiom2logical, which calls is_logical_rule and is_rule_completion:

%% axiom2logical(+Axiom, -Logical, +Predefined)
%% + ... parameter given as input, - ... return value
%% creates the logical rule from an axiom
%% Axiom ... list of axioms provided by the user
%% Logical ... Logical rule after applying the algorithm
%% Predefined ... flag=1 if *2 is an invertible connective
axiom2logical(Axiom, Logical1, Predefined) :-

%start with the axiom in the succedent of the conclusion
Conclusion = [[[],[Axiom]]],

%is_logical_rule decomposes the axiom in the conclusion
is_logical_rule(Conclusion, ConFinal, Predefined),

%if the conclusion after the decomposition contains axioms,
%they are removed

removeAxioms(ConFinal, ConFinal1),
%is_rule_completion implements the Ackermann lemma

is_rule_completion(ConFinal1, Logical),
%premises containing formulas that do not occur in the
%conclusion are removed

removeNoSubformulaPremises(Logical, Logical1).

%% is_logical_rule(+Axiom, -ConFinal, +Predefined)
%% decomposes the axiom by repeatedly applying the invertible rules
%% Axiom ... list of axioms provided by the user
%% ConFinal ... conclusion of the rule
%% Predefined ... flag=1 if *2 is an invertible connective
is_logical_rule([],[],_).
is_logical_rule([H|T], ConFinal,Predefined) :-

%we start to decomponse the first formula in the list
apply_invertibility([H], ConFinal1,Predefined),

%recursive call of the method
is_logical_rule(T, ConFinal2,Predefined),

%concatenation of the decomposed formulas into one list (return value)
append(ConFinal1, ConFinal2, ConFinal).

139

apply_invertibility then implements the recursive application of invertible rules
to decompose the axiom, while is_rule_completion contains the implementation of the
Ackermann lemma: it determines the formula that will be introduced in the conclusion of
the rule and shifts the other formulas to the premise(s).

We show parts of the implementation of apply_invertibility:

%% apply_invertibility(+Axiom, -ConFinal, +Predefined)
%% starts application of invertible rules to the axiom
%% checks if the outermost connective is invertible (is_invertible) and
%% applies either invertible-right-rules or invertible-left-rules
%% Axiom ... axiom provided by the user
%% ConFinal ... Conclusion of the form [Antecedent,Succedent]
%% Predefined ...flag=1 if *2 is an invertible connective
apply_invertibility([],[],_).
apply_invertibility([[A,S]|T], ConFinal,Predefined) :-

%checks if outermost connective of succedent is invertible
is_invertible(S,Predefined),

%decompose succedent if connective is invertible right
is_invertible_right([A,S], F,Predefined),

% concatenate ’new’ [A,S] with rest of the list
append(F, T, CF1),

% recursive call for decomposition
apply_invertibility(CF1, ConFinal,Predefined).

%% is_invertible_right(+Conclusion, -Final, +Predefined),
%% applies the invertible rules (->,r),(v,r),(&,r)
%% (and (*2,r) if Predefined=1)
%% Conclusion ... conclusion of the form [Antecedent, Succedent]
%% Final ... list of conclusions of the form [[A,S],[A,S],...]
%% see e.g. (&,r) which creates two rules!
%% Predefined ... flag=1 if *2 is an invertible connective

%% (->, r): => A -> B .. A => B
is_invertible_right([A, S], F,_) :-

member(Ax1 -> Ax2, S), %checks if Ax1->Ax2 is contained in S
remove(Ax1 -> Ax2, S, S1), %if yes, remove Ax1->Ax2
append([Ax2], S1, S2), %concatenate Ax2 to new succedent
append([Ax1], A, A1), %concatenate Ax1 to new antecedent
F = [[A1, S2]]. %return value

%% the other rules are omitted

The third component exploit contains an implementation of the following things:

140

• isMatrix extracts a PNmatrix out of the newly generated calculus.
• isAnalytic uses the PNmatrix generated in the previous step to check the analyt-

icity of the calculus.
• encodingOut constructs a formalization of the calculus in the language of the

generic proof assistant Isabelle [171] that allows to perform interactive proof search.
The encoding is a shallow embedding (recall the explanation of a shallow versus
a deep embedding in Section 3.3). It is created by using the existing Isabelle-
encoding of the propositional sequent calculus LK (without the rules for negation)
by Lawrence Paulson, and by translating the newly constructed rules into a cor-
responding encoding as follows: ∼ (+, resp.) is used to denote ?1 (?2, resp.).
Upper-case letters denote single formulas, while upper-case letters preceded by $
denote (possibly empty) sequences of formulas. Rule premises are encoded left
of ==> (within brackets [|, |] and semicolon-separated (;) in case of multiple
premises) while the conclusion is right of ==>. See Figure 6.4 for examples of rules
and their corresponding Isabelle-encodings as created by Paralyzer.

Rules Encoded rules

(⇒ ?1)

Γ, ϕ⇒ ∆

Γ⇒ ?1ϕ,∆ $H,P |- $E,$F ==> $H |- $E,∼P,$F

(⇒ ?2)

Γ, ϕ, ?1ϕ⇒ ∆

Γ⇒ ?2ϕ,∆ $H,P,∼P |- $E,$F ==> $H |- $E,+P,$F

(?2 ⇒)

Γ⇒ ϕ,∆ Γ⇒ ?1ϕ,∆

Γ, ?2ϕ⇒ ∆ [| $H,$G |- $E,P; $H,$G |- $E,∼P |]
==> $H,+P,$G |- $E

Figure 6.4: Sequent rules for ?1 = ¬ and ?2 = ◦ of BK and their Isabelle-encoding

Code Example 6. In the following code example, we show the implementation of
isAnalytic. We check for each connective of the PNmatrix (And,Or,Implies, Star1,
Star2) if its truth table contains an empty spot (hasEmptySpot):

%% isAnalytic(+PNmatrix,-EmptySpot)
%% + ... parameter given as input, - ... return value
%% PNmatrix ... contains the PNmatrix
%% EmptySpot ... Flag; analytic = 1, non-analytic = 0
isAnalytic([_, [], _, _, _, _, _], 1).
isAnalytic([_, _, And, Or, Implies, Star1, Star2], EmptySpot) :-

hasEmptySpot(And, ESA),
(ESA \= 1 -> hasEmptySpot(Or, ESO),

141

(ESO \= 1 -> hasEmptySpot(Implies, ESI),
(ESI \= 1 -> hasEmptySpot(Star1, ES1),

(ES1 \= 1 -> hasEmptySpot(Star2, EmptySpot)
; EmptySpot = 1)

; EmptySpot = 1)
; EmptySpot = 1)

; EmptySpot = 1).

%% hasEmptySpot(+TruthTable,-EmptySpot)
%% TruthTable... truth table for a connective
%% EmptySpot ... Flag; empty spot = 1
hasEmptySpot([], 0).
hasEmptySpot([[_, Values]|T], EmptySpot) :-

(Values = [] -> % if there is an empty spot
EmptySpot = 1 % flag is set to 1 (return value)

; hasEmptySpot(T, EmptySpot) % else, we check the other values
).

Output and printOutput. The last component printOutput contains the meth-
ods for creating a text representation of the calculus and its semantics on the command-
line or web interface (printRules); moreover, the generated LATEX-paper contains the
resulting calculus (and information, whether it is analytic or not), its PNmatrix and the
Isabelle-encoding (texOut).

142

CHAPTER 7
Conclusion

7.1 Summary

Motivated by the desire to provide results and tools for the automated investigation of
substructural, intermediate and paraconsistent propositional logics, the core of our work
is a general method to construct analytic calculi in various formalisms. This method,
which is a generalized version of the systematic procedure in [52], is depicted in Figure 7.1
(cf. Chapter 3). Our approach works for logics that are described by adding properties
in the form of Hilbert axioms or frame conditions to a suitable base logic. The properties
are then translated into rules by a central transformation procedure, which relies on (a)
the invertibility of the logical rules of the calculus and (b) the Ackermann lemma. Our
calculi are obtained by adding these rules to the calculus for the base logic.

Figure 7.1: Our approach to define analytic calculi

143

We instantiated this general method for certain classes of intermediate and paracon-
sistent logics to automatically generate analytic calculi for them (for substructural logics,
this is done in [52]) and use the obtained calculi to establish interesting properties for
the formalized logics. We introduced the framework TINC (Tools for the Investigation
of Non-Classical logics), where (most of) our procedures are implemented.

For substructural logics, we considered Monoidal t-norm logic MTL and the ax-
iomatic extensions with axioms within the class P3. The procedure in [52] automatically
generates analytic hypersequent calculi for these logics, transforming the axioms into
equivalent structural hypersequent rules. We investigated the resulting calculi and iden-
tified a large class of rules (called convergent), whose corresponding logics are standard
complete.

We presented two approaches to introduce analytic calculi for intermediate logics,
differing in their starting points: the first transforms Hilbert axioms – the syntactic
specification of the logic – into hypersequent rules, the latter defines labelled calculi
by turning frame conditions – the semantic characterization of the logic – into labelled
rules. Both methods are instantiations of the general approach. For the first method,
we defined a general pattern that combines an algorithm with a heuristic to find logical
hypersequent rules for axioms of a certain form. As a case study, we applied this proce-
dure to the logic Bd2, hence introducing the first cut-free hypersequent calculus for it.
The second method, which is inspired by [76], transforms frame conditions of a certain
shape into equivalent labelled rules. Moreover, we provided uniform proofs of soundness,
completeness and cut elimination for the resulting calculi.

We then considered paraconsistent logics that are described by means of Hilbert
systems of a specific form. These Hilbert systems are defined by (i) extending the lan-
guage of classical propositional logic with finitely many unary connectives and (ii) adding
to the positive fragment of classical propositional logic axioms of a certain shape. Exam-
ples of Hilbert systems described this way are the standard system for classical proposi-
tional logic, or systems for logics of formal inconsistency (in particular, C-systems). We
introduced a systematic two-step-procedure to generate sequent calculi and semantics
for these logics. The first step is an instantiation of the general method: we transform
Hilbert axioms describing the logic into equivalent logical rules, i.e. rules mentioning at
least one unary connective. Based on the obtained calculi, in the second step the proce-
dure extracts semantics in the form of PNmatrices. We used the extracted semantics to
reason about the decidability of the logics and analyticity of the obtained calculi.

Last but not least, we created the framework TINC, which stands for Tools for
the Investigation of Non-Classical logics. TINC currently contains three tools which
implement (some of) the procedures to generate analytic calculi: AxiomCalc implements
the method from [52] to obtain analytic calculi for substructural logics and checks whether
the corresponding logic is standard complete. Framinator implements the transformation
procedure for intermediate logics to translate frame conditions into equivalent labelled
sequent calculus rules. Finally, the tool Paralyzer implements the two-step procedure

144

for transforming (a restricted class of) Hilbert axioms into equivalent logical rules and
extracting the semantics automatically.

7.2 Some Open Questions

The results developed in this thesis provide first steps towards a systematic investigation
of non-classical logics. Naturally, these results raise further questions. In the following,
we discuss some of these questions and shed light on future research directions.

Q1: Can our method capture more/other non-classical logics?

Yes. In fact, this is ongoing research and substructural, intermediate and paraconsis-
tent logics were just among the first classes of non-classical logics that we have considered.
Therefore it would be very interesting to extend our method(s) to capture

(i) more complicated formulas describing substructural or intermediate logics, and/or
(ii) other non-classical logics, like e.g. (first-order) modal logics, temporal logics or

conditional logics (note that some of these logics are covered in [59]).

Regarding (i), recall that a classification of Hilbert axioms describing substructural
logics (called substructural hierarchy) has been introduced in [52]. Any Hilbert axiom
within the classes N2 and P3 of the substructural hierarchy is transformed into equivalent
(hyper)sequent rules by the procedure in [52]. A similar classification of frame conditions
specifying intermediate logics has been presented in Chapter 5. Our method transforms
any frame condition within the class Π2 of this classification into an equivalent labelled
sequent rule. The respective classes of these hierarchies account for the difficulty to
deal with the corresponding axioms or frame conditions proof-theoretically. However, as
already mentioned in Section 4.2 (and Section 5.4), not all Hilbert axioms (and frame
conditions) are formulas within the class P3 (Π2) that can be transformed with existing
procedures. Examples are the Hilbert axiom describing Łukasiewicz logic or the frame
condition specifying the Kreisel-Putnam logic KP, which are beyond P3 (Π2). Therefore
it would be highly desirable to capture more “complicated” axioms or frame conditions,
i.e., axioms beyond the levels N2 and P3, or frame conditions beyond Π2.

In general, there are two main factors in our method that can be changed to capture
other (or larger) classes of logics:

The first factor is the formalism for the base calculus. Most of the results so far
are established for the framework of sequent or hypersequent calculus (see e.g. [52, 62]),
but this is not the only possibility. For example, in [59] an analogous method has been
used for the framework of display calculus. Further formalisms could e.g. be nested
sequent calculus [42, 82], or the calculus of structures [96]. The fundamental criteria for
the selection of the base calculus are: (a) a separation of logical and structural rules in
the calculus and the possibility to assign polarity to the connectives (or quantifiers) of
the logic, and (b) the existence of identity axioms and the cut rule. Based on that, we
can determine the invertibility of the logical rules and formulate a suitable version of the
Ackermann lemma, which are both required for the transformation procedure.

145

Second, following the spirit of our results in Chapters 5 and 6, we can change the
transformation procedure to generate logical instead of structural rules. The addition of
logical rules to the base calculus however requires some additional investigation. Since
new logical rules interact with all the existing rules of the calculus mentioning the same
connectives, it is more difficult to provide a uniform proof of cut elimination. A possibility
is to find sufficient conditions of the calculi for cut elimination, as has been done e.g.
in [145, 118]. Alternatively, an ad-hoc syntactic proof (as introduced in Section 5.3) or
suitable semantic methods (as in [112] or by using tools like PNmatrices in Chapter 6)
are needed to get a view on the obtained calculus as a whole.

Of course our method can also be extended in other ways to cover more logics.
Possible inspirations could be other (semi-)automated procedures, such as the methods
introduced in [112, 117, 115, 124] where formulas (Hilbert axioms or frame conditions)
are translated into structural or logical rules, or the method in [133], which transforms
frame conditions into systems of labelled rules.

Q2: How can we combine TINC with existing systems?

TINC and its tools implement (most of) the theoretical results established in this
PhD thesis. One interesting research direction is thus to think of possible applications
of the (encoded) calculi that are automatically generated by AxiomCalc, Framinator or
Paralyzer. The calculi produced by Paralyzer are already encoded in Isabelle [171] to
allow semi-automated proof search. Naturally, encodings of the calculi for COQ [37],
TWELF [147] or other reasoners could be generated in an analogous way.

Two interesting tools that could be used in combination with TINC are TATU [136]
and MetTeL2 [164] (see also Section 3.3). The investigative tool TATU takes as input
a calculus encoded in SELLF [135] and then checks whether the specified proof system
admits cut elimination. TATU could also be used to perform proof search in the encoded
calculi. This could be very useful in combination with the generation of logical rules (see
Q1). Another interesting research direction is the encoding of our calculi for the tableau
prover MetTeL2 to perform automated proof search.

Q3: Can we show standard completeness for other logics?

In Chapter 4, we introduced the notion of convergent rules for the hypersequent
rules that are generated from axioms that are within the class P3 of the substructural
hierarchy. We showed standard completeness for any propositional logic extending MTL
with a set of axioms having equivalent convergent rules. In [27], the notion of convergent
rules was extended to calculi for first-order substructural logics. The results led to
standard completeness proofs for axiomatic extensions of first-order MTL. As shown
in [27], convergency of rules is however not a necessary condition for density elimination
(and, hence, for standard completeness). An interesting research direction would be to
extend the notion of convergency to obtain a necessary and sufficient condition for density
elimination.

Note that the condition of convergent rules is also too weak to ensure density elimina-
tion for (propositional or first-order) hypersequent calculi that do not contain the rules for
weakening, i.e. (w, l) and (w, r). These calculi characterize extensions of Uninorm Logic

146

UL [127], i.e., MTL without weakening. Until recently, mostly calculi-tailored proofs of
density elimination (and standard completeness) have been available for weakening-free
logics, see [127, 168, 25]. A first general density elimination proof has been introduced
in [26], where standard completeness is proved for a large class of extensions of UL with
many axioms within N2. Note however, that axioms within the class P3 still cannot
be covered by this method (and neither all the axioms of the class N2). An interesting
question here would indeed be to identify a class of P3 axioms that, when added to UL,
lead to standard complete logics.

Q4: Can we provide a uniform proof of analyticity for the hypersequent calculi introduced
in Chapter 5?

In the first part of Chapter 5, we transformed Hilbert axioms of a specific form into
equivalent logical hypersequent rules using a heuristics. Since the addition of logical rules
to the base calculus might destroy cut elimination, as mentioned above, we had to provide
an ad-hoc proof of cut elimination for the newly obtained calculus. Therefore, it is an
interesting question if we can provide a fully automated procedure for the introduction
of logical hypersequent rules that do not harm the analyticity of the resulting calculus.

One possibility is to find strong enough conditions for the preservation of analyticity
that can be checked, similar e.g. to the convergency condition for standard completeness.
It would also be interesting to use the results from [115] and see to which extent they
can be used for our calculi. An alternative would be to implement the generation of
the calculi in TINC and use tools such as TATU to reason about the analyticity of the
calculi.

Q5: Can we define analytic calculi and non-deterministic semantics for a larger class of
paraconsistent logics?

In fact, step 1 of the procedure in Chapter 6 (the systematic introduction of calculi)
could be easily adapted to capture e.g. paraconsistent logics extending intuitionistic logic,
substructural paraconsistent logics or first-order logics. However, we currently have no
uniform method to show that the generated calculi are indeed analytic. The construction
of the corresponding PNmatrices (step 2) would also require a deeper investigation, and
this is currently the main theoretical problem for extending our work. For the time
being there is indeed no theory of PNmatrices for first-order logics, intuitionistic logics
or substructural logics (that, in fact, also lack a theory of Nmatrices).

Moreover, step 2 of our procedure works only for logics characterized by finitely-
valued partial non-deterministic matrices. Some paraconsistent logics can however only
be characterized by infinitely-valued (partial) non-deterministic matrices, e.g. logics
defined by Hilbert systems that include the axioms (l) ¬(ϕ∧¬ϕ) ⊃ ◦ϕ or (d) ¬(¬ϕ∧ϕ) ⊃
◦ϕ (cf. Table 6.2, Chapter 6). For such logics, step 1 of our procedure still works, but
we cannot extract semantics in form of PNmatrices out of it. A similar problem was
addressed in [17], where the modular procedure from [16, 18] has been extended to
construct infinitely-valued Nmatrices and equivalent sequent calculi for logics including
these “problematic” axioms. An interesting open question is if we can – and if yes, how
to – similarly extend our procedure to these logics.

147

APPENDIX A
Substructural Logics

The proofs in this appendix belong to Section 4.3. We prove that HMTL (the hyperse-
quent calculus for MTL, see Table 4.4) extended with any set of convergent rules (see
Definition 24) admits density elimination.

Lemma 3. Let R be any set of convergent rules extending the calculus HMTL and
let H be the calculus defined by HMTL+R.

1. Any derivation d of H can be transformed into a derivation of H[p/α]l[p/⇒α]r, for
any formula α and propositional variable p.

2. Let d′ and d1 be derivations of G′ | Σ, p ⇒ Π | Λ ⇒ p (where p /∈ G′,Σ,Π,Λ) and
G′ | Θ,∆⇒ Ψ. We can find a derivation of G′ | Θ,Λ⇒ Ψ | Σ,∆⇒ Π.

Proof. 1. Let dα be the derivation d where p is replaced with α. By induction on |dα|.
When dα ends in an initial sequent, we are done. Otherwise, consider the last inference
rule r′ in dα. Let r′ be any logical or structural rule of HMTL or r′ ∈ R. The claim holds
since all rules of HMTL and convergent rules (that are completed rules) are substitutive
(recall Definition 17).

2. By 1. and d′ we have a derivation d2 of G′ | Σ,�∆ ⇒ Π | Λ ⇒ �∆ where �∆
stands for the multiplicative conjunction · of the formulas in ∆ (note that p /∈ G′,Σ,Π,Λ).
The desired derivation follows by applying (cut) to G′ | Θ,Λ ⇒ Ψ | ∆ ⇒ �∆ and the
end hypersequent of

... d2
G′ | Σ,�∆⇒ Π | Λ⇒ �∆

... d1
G′ | Θ,∆⇒ Ψ

(·, l), (ew)
G′ | Θ,�∆⇒ Ψ | Σ,�∆⇒ Π

(cut)
G′ | Θ,Λ⇒ Ψ | Σ,�∆⇒ Π

149

In the following proof, we denote by S∗i the sequent Si[p/Λ]l[p/Σ⇒Π]r, and by G∗,H∗,
the hypersequents G,H, where the same substitution is applied to each one of their
components.

Theorem 4 (Density elimination). HMTL extended with any set R of convergent
rules admits density elimination.

Proof. To perform density elimination, it is sufficient to repeatedly remove topmost ap-
plications of (D). Let d be a derivation in HMTL + (D) + R ending in an application
of (D), with d′ the (D)-free derivation ending in G′ | Σ, p⇒ Π | Λ⇒ p, i.e.:

... d′

G′ | Σ, p⇒ Π | Λ⇒ p
(D)

G′ | Σ,Λ⇒ Π

Since convergent rules are completed rules of a particular form, they preserve cut elimi-
nation when added to HMTL. Hence we assume that d′ is cut-free.

Claim: For each hypersequent H in d′ that is not a p-axiom, one can find a (D)-free
derivation of G′ | H∗.

The result on density elimination follows from this claim as follows: Let H be G′ |
Λ ⇒ p | Σ, p ⇒ Π. From the claim we get that G′ | G′ | Λ,Σ ⇒ Π | Λ,Σ ⇒ Π is
derivable (note that (G′)∗ = G′ by the eigenvariable condition on p). The desired proof
of G′ | Λ,Σ⇒ Π follows by multiple applications of (ec).

The proof of the claim proceeds by induction on the height of the cut-free subderiva-
tion dH of H in HMTL + R. We distinguish cases according to the last rule r applied in
dH . When |dH | = 0, or when r is (ec) or (ew), we are done after an application to the
induction hypothesis. Otherwise, consider the following cases:

Suppose that r is any rule except for (com), (ec), (ew) or a convergent rule:

G | S1 . . . G | Sm
G | S r

and G | S does not contain a p-axiom. Hence, also no G | Si for i ∈ {1, . . . ,m} contains
a p-axiom. Then by inductive hypothesis, we get a derivation of G′ | G∗ | S∗i for any
premise G | Si. The claim follows by application of r and (ec), if needed.

Suppose that r is (com). We have to distinguish two cases: First, suppose that
none of the premises contains a p-axiom. Then the claim follows by applications of the
inductive hypothesis and (com), e.g.:

...d1

G | Γ1,Γ2 ⇒ p

...d2

G | ∆1,∆2, p
k ⇒ Ψ

(com)
G | Γ1,∆1, p

k ⇒ Ψ | Γ2,∆2 ⇒ p

150

Then by inductive hypothesis we have:

`HMTL G
′ | G∗ | Γ1,Γ2,Σ⇒ Π and `HMTL G

′ | G∗ | ∆1,∆2,Λ
k ⇒ Ψ

Hence by (com), `HMTL G
′ | G∗ | Γ1,∆1,Λ

k ⇒ Ψ | Γ2,∆2,Σ⇒ Π.
For the second case, suppose that one premise contains a p-axiom, e.g.

G | Γ1,Γ2, p
l ⇒ p G | ∆1, p

(k−l),∆2 ⇒ Ψ
(com)

G | Γ1,∆1, p
k ⇒ Ψ | Γ2,∆2 ⇒ p

We show how to obtain a (D)-free derivation of

G′ | G∗ | Γ1,∆1,Λ
k ⇒ Ψ | Γ2,∆2,Σ⇒ Π

By the inductive hypothesis, we get a derivation d1 `HMTL G
′ | G∗ | ∆1,Λ

(k−l),∆2 ⇒
Ψ. By applying Lemma 3.2 to d1 and to d′ `HMTL G′ | Σ, p ⇒ Π | Λ ⇒ p, we get a
derivation of G′ | G∗ | ∆1,Λ

k−l+1 ⇒ Ψ | ∆2,Σ⇒ Π.
The desired derivation of G′ | G∗ | Γ1,∆1,Λ

k ⇒ Ψ | Γ2,∆2,Σ ⇒ Π is then obtained
by applications of (w, l).

Finally, suppose that r is a convergent rule of the form

G | S1 . . . G | Sm
G | C1 | . . . | Cq

r

and that the conclusion of r contains no p-axiom. We show how to find a derivation of

G′ | G∗ | C∗1 | · · · | C∗q .

Take a premise G | Si. If G | Si is not a p-axiom, the inductive hypothesis gives us
a derivation of G′ | G∗ | S∗i . Note that this is always the case when R(Si) = ∅, and
when G | Si is a 0-pivot as in the latter case the metavariables instantiated to obtain Si
are all included in one component of the conclusion. Thus, if G | Si was a p-axiom, the
conclusion would be a p-axiom as well, contradicting the assumption.

Assume now that G | Si is a p-axiom. We show below that we can always obtain a
(D)-free derivation of

G′ | G∗ | S∗i | C∗s
for some s ∈ {1, . . . , q}. As r is convergent, there is an n-pivot premise G | Sj for G | Si.
We show how to use G | Sj to obtain the required derivation with the following case
distinction:

• n = 1: There is a 1-pivot premise G | Sj for G | Si, i.e., (the metasequent leading
to) Si differs only in one metavariable from (that of) Sj . By Definition 23, G | Sj
is also a 0-pivot and hence it is not a p-axiom. Let G | Si and G | Sj be obtained
as instantiations of the following premises1 of r:

Si is obtained from Θ,Γ
k
,∆

l ⇒ Π and Sj from Θ,∆
k+l ⇒ Π

1To simplify the notation Θ stands for all the metavariables Si and Sj have in common except ∆.

151

As G | Si is a p-axiom and G | Sj is not, only Γ can be instantiated with a
propositional variable p. The most general case is when Γ is instantiated by Γ, pn,
the metavariable ∆ by the multiset ∆, Θ by Θ and Π by p. Hence

G | Si is G | Θ,Γk,∆l, pmk ⇒ p and G | Sj is G | Θ,∆k+l ⇒ p.

As G | Sj is not a p-axiom, by the inductive hypothesis we have a derivation for
G′ | G∗ | Θ,∆k+l,Σ ⇒ Π. Using the derivation d′ of G′ | Σ, p ⇒ Π | Λ ⇒ p, by k
applications of Lemma 3.2 with (ew) and (ec) we get

G′ | G∗ | Θ,Λk,∆l,Σ⇒ Π | Σ,∆⇒ Π

Now, by multiple applications of internal weakenings (w, l), we have

G′ | G∗ | Θ,Γk,Λmk,∆l,Σ⇒ Π | Σ,∆⇒ Π

From further repeated applications of (w, l) on the fourth component, we finally
obtain G′ | G∗ | S∗i | C∗s , where Cs stands for the component of the conclusion to
which all the metavariables in (the metasequent leading to) Sj belong.

• n > 1: Let G | Sj be an n-pivot premise for G | Si. By Definition 23 (the
metasequent leading to) G | Si differs from (that of) G | Sj by n metavariables
and there exist n other premises for which G | Sj is an (n − 1)-pivot. As in
the previous case, let Si and Sj be obtained respectively as instantiations of the
following premises of r

Θ,Γ
k1

1 , . . . ,Γ
kn
n ,∆

l1
1 , . . . ,∆

ln
n ⇒ Π and Θ,∆

k1+l1
1 , . . . ,∆

kn+ln
n ⇒ Π

Assume w.l.o.g. that G | Sj is:

G | Θ,∆k1+l1
1 , . . . ,∆kn+ln

n ⇒ p

Two cases have to be considered, according to the possible instantiations of the
metavariables Γi with the propositional variable p in G | Si:

(i) In G | Si all the metavariables Γi are instantiated with a multiset Γi together
with at least one occurrence of p. Then we repeatedly apply Lemma 3.2 to d′

and G | Sj together with (ew) and (ec) to replace ∆1, . . . ,∆n with Λ in Sj ,
respectively k1, . . . kn times. This way we get

G | Θ,Λk1 , . . . ,Λkn ,∆l1
1 , . . . ,∆

ln
n ,Σ⇒ Π | ∆1,Σ⇒ Π | . . . | ∆n,Σ⇒ Π

The desired hypersequent G′ | G∗ | S∗i | C∗s follows by suitable applications
of (w, l) and (ec) (as in the 1-pivot case, Cs stands for the component of the
conclusion to which all the metavariables in Sj belong).

152

(ii) In G | Si all the metavariables Γi are instantiated with Γi, p
mi and mi > 0

only for t of them (1 ≤ t < n). (Note that in this case Lemma 3.2 would
replace each metavariable ∆i with Λ, leading to at least n occurrences of Λ,
and n > r.) The idea is to find another premise of r which is not a p-axiom
and suitably apply Lemma 3.2. The existence of (at least one) such a premise
is guaranteed by the notion of n-pivot.
We first illustrate the way we proceed with an example for n = 3.
Assume that Si arises as an instantiation of Γ1,Γ2,Γ3 ⇒ Π and Sj as an
instantiation of ∆1,∆2,∆3 ⇒ Π (G | Sj is a 3-pivot for G | Si). By definition
of 3-pivot, there exist 3 premises in r for which G | Sj is a 2-pivot. For each of
these premises, there exist 2 premises in r for which G | Sj is a 1-pivot. In the
figure below we show how all these premises are related w.r.t the metavariables
they instantiate.

(Case r = 1) If only 1 metavariable, say Γ1, is instantiated in Si with Γ1, p we
need to find a corresponding premise which will not contain a p-axiom, i.e.,
that does not contain Γ1. The first occurrence of such a premise is among the
premises that have G | Sj as a 2-pivot, that is ∆1,Γ2,Γ3 ⇒ Π.
(Case r = 2) Assume now that 2 metavariables, say Γ1,Γ2, are instantiated
with Γ1, p and Γ2, p, respectively. Again, we need to find a corresponding
premise that is not a p-axiom. In this case, the set of premises that have
G | Sj as a 2-pivot does not suffice because each of them contains either Γ1

or Γ2. The first occurrence of a premise that is not a p-axiom is among the
premises that have G | Sj as a 1-pivot, i.e., ∆1,∆2,Γ3 ⇒ Π.

In general, we can eventually find a premise that is not a p-axiom among
those that have G | Sj as (n − t)-pivot. Assume for the general case that
the occurrences of p in G | Si are related to the instantiation of t different
metavariables, w.l.o.g Γ1, . . . ,Γt, i.e., Si is

Θ,Γk1
1 , . . . ,Γ

kn
n ,∆

l1
1 , . . . ,∆

ln
n , p

m1k1+...+mtkt ⇒ p with m1, . . . ,mt > 0

Then we can find premises for which G | Sj is an (n − t)-pivot; (the metase-
quents leading to) those premises differ from (that of)G | Si in tmetavariables.
(At least) one of these premises will not be a p-axiom, and hence it will have

153

the form:

G | Θ,∆k1+l1
1 , . . . ,∆kt+lt

t ,Γ
kt+1

t+1 ,∆
lt+1

t+1 , . . . ,Γ
kn
n ,∆

ln
n ⇒ p

By the inductive hypothesis on the depth of the derivation we have a derivation
of:

G′ | G∗ | Θ,∆k1+l1
1 , . . . ,∆kt+lt

t ,Γ
kt+1

t+1 ,∆
lt+1

t+1 , . . . ,Γ
kn
n ,∆

ln
n ,Σ⇒ Π

Then we repeatedly apply Lemma 3.2 together with (ew) and (ec) to replace
∆1, . . . ,∆t with Λ, respectively k1, . . . , kt times. After suitable applications
of (w, l) and (ec), we finally get

G′ | G∗ | S∗i | C∗s

Summing up, when the last rule in dH is convergent, for each premise G | Si we have:

• If G | Si does not contain any p-axiom, G′ | G∗ | S∗i is (D)-free derivable.
• If G | Si contains a p-axiom, then G′ | G∗ | S∗i | C∗s is (D)-free derivable.

The required derivation of G′ | G∗ | C1
∗ | . . . | Cq∗ follows by r and subsequent

applications of (ec), if needed. This completes the proof of the main claim.

154

APPENDIX B
Paraconsistent Logics

The proofs in this appendix belong to Section 6.6, which contains our procedure for the
specific subclass of paraconsistent logics defined by the Hilbert calculi HR.

For any Hilbert calculus H ∈ HR, we construct a UL-simple sequent calculus G and
a PNmatrix MG by Corollary 8 and Definition 52. We first present the soundness and
completeness proof of the UL-simple sequent calculus G w.r.t. its PNmatrix MG. In
Theorem 19, we prove that a UL-simple sequent calculus is UL-analytic iff its PNmatrix
is an Nmatrix (i.e., it does not have an empty set in its truth tables).

Theorem 18 (Soundness and Completeness). Let s0 be a W-sequent and G be a UL-
simple sequent calculus for L. Then, `U

+
L (W)

G s0 iff every MG-U−L (W)-valuation w-
satisfies s0.

Proof. “⇒”: It suffices to show that whenever an MG-U−L (W)-valuation w-satisfies the
premises of some application of a rule r = Q/s of G consisting solely of formulas from
U+
L (W), it also w-satisfies its conclusion. Consider such an application of r inferring
σ(s) ∪ c from the set {σ(q) ∪ c | q ∈ Q}, where c is an L-sequent, and σ is an L-
substitution. Let v be anMG-U−L (W)-valuation and suppose that v w-satisfies σ(q) ∪ c
for every q ∈ Q. We prove that v w-satisfies σ(s) ∪ c. If v w-satisfies c, we are done.
Suppose otherwise. Then v w-satisfies σ(q) for every q ∈ Q. We show that v w-satisfies
σ(s) (and, thus, it w-satisfies σ(s) ∪ c). Let σ(p1) = ψ1 and σ(p2) = ψ2. We consider
the case when r is an UL-simple rule (the proofs for the rules of LK+ are similar). The
following three cases can occur:

• Suppose that r = Q/{b : .p1} is a unary-one rule. Note that since we only
consider applications of r consisting solely of formulas from U+

L (W), we have that
.ψ1 ∈ U+

L (W) and so ψ1 ∈ U−L (W). The fact v w-satisfies σ(q) for every q ∈ Q
implies that v(ψ1) satisfies every q ∈ Q. To see this, consider the following cases:

– q = {b : p1}, and ψ1 does not have the form ?ϕ: Since v w-satisfies σ(q),
v(ψ1)ε = b.

155

– q = {b : p1}, and ψ1 has the form ?ϕ: Since v w-satisfies σ(q), v(ϕ)? = b and
as v is anMG-valuation, v(?ϕ)ε = b.

– q = {b : ?p1}: Since v w-satisfies σ(q), v(ψ1)? = b.

Hence, we obtain that v(ψ1) satisfies q. Since v(ψ1) ∈ VMG
, v(ψ1) respects r, and

so v(ψ1). = b. Thus v w-satisfies {b : .ψ1}.
• Suppose that r = Q/{b : ? . p1} is a unary-two rule. As in the previous case, v(ψ1)

satisfies every q ∈ Q. Thus, since v(.ψ1) ∈ .MG
(v(ψ1)), we have v(.ψ1)? = b. It

follows that v w-satisfies {b : ? . ψ1}.
• Suppose that r = Q/{b : ?(p1�p2)} is a binary rule. Similarly to the previous cases,
〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q. Thus, since v(ψ1 � ψ2) ∈ �MG

(v(ψ1), v(ψ2)),
we have that v(ψ1 � ψ2)? = b. It follows that v w-satisfies {b : ?(ψ1 � ψ2)}.

“⇐”: Suppose that 6`U
+
L (W)

G s0. We construct an MG-U−L (W)-valuation v that does
not w-satisfy s0. It is straightforward to construct a “maximal” (infinite) set Ω of labelled
L-formulas that extends s0 and satisfies the following conditions:

1. Ω consists of labelled L-formulas of the form b : ψ for ψ ∈ U+
L (W).

2. 6`U
+
L (W)

G s for every L-sequent s ⊆ Ω.

3. For every formula ψ ∈ U+
L (W) and b ∈ {f, t}, if b : ψ 6∈ Ω then `U

+
L (W)

G s ∪ {b : ψ}
for some L-sequent s ⊆ Ω.

Note that the availability of the rules (cut) and (id) implies that:

1. For every ψ ∈ U+
L (W), either f : ψ ∈ Ω or t : ψ ∈ Ω. Otherwise, we would have

`U
+
L (W)

G s1 ∪ {f : ψ} and `U
+
L (W)

G s2 ∪ {t : ψ} for s1, s2 ⊆ Ω. By applying (cut) (and

weakenings) we could obtain `U
+
L (W)

G s1 ∪ s2. Since s1 ∪ s2 ⊆ Ω, this contradicts
the properties of Ω.

2. Similarly, for every ψ ∈ U+
L (W), either f : ψ 6∈ Ω or t : ψ 6∈ Ω. Otherwise, {t :

ψ, f : ψ} ∈ Ω, but `U
+
L (W)

G {f : ψ, t : ψ} by applying (id).

Let v be the function from U−L (W) to FUL defined by v(ψ)ε = t iff f : ψ ∈ Ω, and for
every ? ∈ UL: v(ψ)? = t iff f : ?ψ ∈ Ω. Thus we have that for every ψ ∈ U−L (W) and
b ∈ {f, t}, v(ψ)ε = b iff b : ψ 6∈ Ω, and for every ? ∈ UL v(ψ)? = b iff b : ?ψ 6∈ Ω. We
show that v does not w-satisfy s0. Let b : ψ ∈ s0 such that ψ does not have the form
?ϕ. Thus ψ ∈ U−L (W), and since s0 ⊆ Ω, v(ψ)ε 6= b. Similarly, let b : ψ ∈ s0 such that ψ
does have the form ψ = ?ϕ (for some ? ∈ U and LU -formula ϕ). Thus ϕ ∈ U−L (W), and
since s0 ⊆ Ω, v(ϕ)? 6= b.

To show that v is anMG-valuation, we use the following properties:

(∗) Let σ be an LU -substitution, such that σ(p1) ∈ U−L (W). If v(σ(p1)) satisfies an L-
sequent q of the form {b : ?p1} or {b : p1}, then `U

+
L (W)

G s∪σ(q) for some L-sequent
s ⊆ Ω.
Proof. Suppose that v(σ(p1)) satisfies q. Then one of the following holds:

156

• q = b : p1 and v(σ(p1))ε = b. Thus b : σ(p1) 6∈ Ω, and since σ(p1) ∈ U+
L (W),

we obtain that `U
+
L (W)

G s ∪ {b : σ(p1)} for some L-sequent s ⊆ Ω.
• q = b : ?p1 and v(σ(p1))? = b. Thus b : ?σ(p1) 6∈ Ω, and since ?σ(p1) ∈ U+

L (W),

we obtain that `U
+
L (W)

G s ∪ {b : ?σ(p1)} for some LU -sequent s ⊆ Ω.

Similarly, we have the following:

(∗∗) Let q be an L-sequent of the form q of the form {b : ?pi} or {b : pi} for i ∈ {1, 2}, and
σ be an L-substitution, such that σ(p1), σ(p2) ∈ U−L (W). If 〈v(σ(p1)), v(σ(p2))〉
satisfies q, then `U

+
L (W)

G s ∪ σ(q) for some L-sequent s ⊆ Ω.
Proof. Suppose that 〈v(σ(p1)), v(σ(p2))〉 satisfies q. Then one of the following
holds:

• q = b : pi and v(σ(pi))
ε = b for i ∈ {1, 2}. Thus b : σ(pi) 6∈ Ω, and since

σ(pi) ∈ U+
L (W), we obtain that `U

+
L (W)

G s ∪ {b : σ(pi)} for some L-sequent
s ⊆ Ω.
• q = b : ?pi and v(σ(pi))

? = b for i ∈ {1, 2}. Thus b : ?σ(pi) 6∈ Ω, and since

?σ(pi) ∈ U+
L (W), we obtain that `U

+
L (W)

G s∪{b : ?σ(pi)} for some LU -sequent
s ⊆ Ω.

We show that VMG
is the range of v. Let ψ ∈ U−L (W). To prove that v(ψ) ∈ VMG

,
we show that v(ψ) respects all unary-one rules of G. Consider a unary-one rule of G,
r = Q/{b : ?p1}. Suppose that v(ψ) satisfies every q ∈ Q. We show that v(ψ)? = b. Let
σ be any L-substitution, assigning ψ to p1. By (∗), for every q ∈ Q, there exists some

L-sequent sq ⊆ Ω such that `U
+
L (W)

G sq ∪ σ(q). By applying weakenings and the rule r,

we obtain that `U
+
L (W)

G

⋃
q∈Q sq ∪ {b : ?ψ} (here we use the fact that ?ψ ∈ U+

L (W) since
ψ ∈ U−L (W)). Thus, {b : ?ψ} 6∈ Ω, and so v(ψ)? = b.

Next, we show that v respects the truth-tables ofMG:

1. Let .ψ ∈ U−L (W) (where . ∈ UL). We show that v(.ψ) ∈ .MG
(v(ψ)). By the

construction of .MG
, it suffices to show: (i) v(.ψ)ε = v(ψ).; and (ii) v(.ψ)? = b

for every unary-complex rule r = Q/{b : ? . p1} of G for which v(ψ) satisfies every
q ∈ Q. (i) trivially holds using the definition of v. For (ii), let r = Q/{b : ? . p1} be
a unary-complex rule of G, and suppose that v(ψ) satisfies every q ∈ Q. We prove
that v(.ψ)? = b. Let σ be any L-substitution, assigning ψ to p1. By (∗) (note that
ψ ∈ U−L (W) since U−L (W) is closed under subformulas), for every q ∈ Q, there exists

some L-sequent sq ⊆ Ω such that `U
+
L (W)

G sq ∪ σ(q). By applying weakenings and

the rule r, we obtain that `U
+
L (W)

G

⋃
q∈Q sq ∪ {b : ? . ψ} (note that ? . ψ ∈ U+

L (W)

since .ψ ∈ U−L (W)). This implies that b : ? . ψ 6∈ Ω, and so v(.ψ)? = b.
2. Let ψ1�ψ2 ∈ U−L (W) for � ∈ {∧,∨,⊃}. We show that v(ψ1�ψ2) ∈ �MG

(v(ψ1), v(ψ2)).
Here it suffices to show: (i) v(ψ1 � ψ2)? = b for every binary rule r = Q/{b : ?(p1 �
p2)} of G for which 〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q; and (ii) v(�(ψ1, ψ2))ε ∈

157

�MCl+
(v(ψ1)ε, v(ψ2)ε). We prove (i) ((ii) is similar). Let r = Q/{b : ?(p1 � p2)}

be a binary rule of G, and suppose that 〈v(ψ1), v(ψ2)〉 satisfies every q ∈ Q. We
prove that v(ψ1 � ψ2)? = b. Let σ be any L-substitution, assigning ψ1 to p1,
and ψ2 to p2. By (∗∗), for every q ∈ Q, there exists some L-sequent sq ⊆ Ω

such that `U
+
L (W)

G sq ∪ σ(q). By applying weakenings and the rule r, we obtain

that `U
+
L (W)

G

⋃
q∈Q sq ∪ {b : ?(ψ1 � ψ2)} (note that ?(ψ1 � ψ2) ∈ U+

L (W) since
ψ1 �ψ2 ∈ U−L (W)). This implies that {b : ?(ψ1 �ψ2)} 6∈ Ω, and so v(ψ1 �ψ2)? = b.

Corollary 9. For every L-sequent s, `G s iff `MG
s.

Proof. The claim follows by choosing W = L in Theorem 18 (in this case U+
L (W) =

U−L (W) =W). Note that anMG-valuation v for L w-satisfies an L-sequent iff v |=MG
s

(since v(?ψ)ε = v(ψ)? for every L-formula ?ψ).

Theorem 19. A UL-simple calculus G is UL-analytic iffMG is an Nmatrix.

Proof. “⇒”: Suppose thatMG is not an Nmatrix. First, if VMG
is empty, then `MG

∅,
and so by Corollary 9, `G ∅. But, U+

L (∅) = ∅, and clearly there is no derivation in G that
does not contain any formula. It follows that G is not UL-analytic in this case. Otherwise,
there exist either some . ∈ UL and u ∈ VMG

such that .MG
(u) = ∅, or some � ∈ {∧,∨,⊃}

and u1, u2 ∈ VMG
such that �MG

(u1, u2) = ∅. We consider here only the first case (the
second case is similar). Define the LU -sequent s = {uε : p1} ∪ {u? : ?p1 | ? ∈ UL}
(where t = f and f = t). We first prove that `G s. By Corollary 9 it suffices to show
`MG

s. Suppose otherwise, and let v be an MG-valuation for L such that v 6|=MG
s.

Then, v(p1)ε = uε and v(?p1)ε = u? for every ? ∈ UL. Since v is an MG-valuation, we
have that v(p1)? = u? for every ? ∈ UL. It follows that v(p1) = u. Moreover, we have
v(.p1) ∈ .MG

(v(p1)). Clearly, this is not possible under the assumption that .MG
(u) =

∅. Next we claim that 6`U
+
L (sub[s])

G s (and so G is not UL-analytic). To see this, note that
the {p1}-valuation defined by v(p1) = u is an MG-U−L (sub[s])-valuation that does not
w-satisfy s. By Theorem 18, 6`U

+(sub[s])
G s.

“⇐”: Assume that MG is an Nmatrix and 6`U
+
L (sub[s])

G s for some L-sequent s. We
prove that 6`G s. By Theorem 18, there exists anMG-U−L (sub[s])-valuation v that does
not w-satisfy s. AsMG is an Nmatrix, v can be extended to a (full)MG-valuation v′.
Note that v′ 6|=MG

s (since v(?ψ)ε = v′(ψ)? for every L-formula ?ψ). Corollary 9 then
entails that 6`G s.

158

APPENDIX C
TINC: Tool Output

C.1 Example LATEX-output of AxiomCalc

The following pages contain the file generated by AxiomCalc for the example shown in
Section 4.3.1.

159

Standard completeness for MTL extended with

the axiom ¬(α · β) ∨ (α ∧ β → α · β)

AxiomCalc∗

November 16, 2014

Abstract

This paper introduces a cut-free hypersequent calculus for MTL ex-
tended with the (Hilbert) axiom ¬(α · β) ∨ (α ∧ β → α · β). The calculus
is generated by the Prolog-program AxiomCalc, which implements the
procedure in [2]. Moreover, it shows that the resulting logic is standard
complete. This is done by checking the conditions in [1] on the generated
calculus, which guarantee standard completeness for the considered logic.

1 Introduction

We introduce a cut-free hypersequent calculus for Monoidal t-norm logic MTL
extended with the axiom ¬(α ·β)∨(α∧β → α ·β). The analytic calculus for this
logic is obtained via a Prolog-implementation of the procedure in [2]. Moreover,
we check whether the newly generated rule is convergent. This ensures standard
completeness for MTL extended with ¬(α · β) ∨ (α ∧ β → α · β), that is,
completeness of the logic with respect to algebras based on the truth values in
[0, 1].

2 Preliminaries

The basic system we will deal with is Monoidal t-norm logic MTL which is the
logic of left-continuous t-norms1. It is obtained by adding the prelinearity axiom
(α → β) ∨ (β → α) to intuitionistic logic without contraction, see Table 1 for
the corresponding hypersequent calculus HMTL. MTL is standard complete.

Formulas of MTL are built from propositional variables and the constants
0 and 1 by using → (implication), ∧ (additive conjunction), · (multiplicative
conjunction), and ∨ (disjunction). We use ¬α as an abbreviation for α→ 0.

We use α, β, . . . to denote (metavariables for) formulas, Π stands for stoups,
i.e., either a (metavariable for a) formula or the empty set, and Γ,∆, . . . denote
(metavariables for) finite (possibly empty) multisets of formulas.

∗http://www.logic.at/tinc/webaxiomcalc
1A t-norm is a commutative, associative, increasing function ∗ : [0, 1]2 → [0, 1] with identity

element 1. ∗ is left continuous iff whenever {xn}, {yn} (n ∈ N) are increasing sequences in
[0, 1] s.t. their suprema are x and y, then sup{xn ∗ yn : n ∈ N} = x ∗ y. The residuum of ∗ is
a function →∗ where x→∗ y = max{z | x ∗ z ≤ y}.

1

G | Γ⇒ α G | α,∆⇒ Π

G | Γ,∆⇒ Π
(cut)

G | α⇒ α
(init)

G | 0⇒ (0l)

G | Γ⇒ α G | ∆⇒ β

G | Γ,∆⇒ α · β (· r)
G | α, β,Γ⇒ Π

G | α · β,Γ⇒ Π
(· l)

G |⇒ 1
(1r)

G | Γ⇒ α G | β,∆⇒ Π

G | Γ, α→ β,∆⇒ Π
(→ l)

G | α,Γ⇒ β

G | Γ⇒ α→ β
(→ r)

G | Γ⇒ Π

G | Γ, α⇒ Π
(wl)

G | Γ⇒ α G | Γ⇒ β

G | Γ⇒ α ∧ β (∧r)
G | αi,Γ⇒ Π

G | α1 ∧ α2,Γ⇒ Π
(∧l)

G | Γ⇒
G | Γ⇒ Π

(wr)

G | α,Γ⇒ Π G | β,Γ⇒ Π

G | α ∨ β,Γ⇒ Π
(∨l)

G | Γ⇒ αi

G | Γ⇒ α1 ∨ α2
(∨r) G

G | Γ⇒ Π
(EW)

G | Γ⇒ Π | Γ⇒ Π

G | Γ⇒ Π
(EC)

G | Γ1,∆1 ⇒ Π1 G | Γ2,∆2 ⇒ Π2

G | Γ1,Γ2 ⇒ Π1 | ∆1,∆2 ⇒ Π2
(com)

Table 1: Hypersequent calculus HMTL for MTL

Definition 1 A hypersequent G is a multiset S1 | · · · | Sn where each Si for i =
1, . . . , n is a sequent, called a component of the hypersequent. A hypersequent
is called single-conclusion if all its components are single-conclusion.

The symbol “|” is intended to denote disjunction at the meta-level. In this
paper, we only consider single-conclusion (hyper)sequents. Given a sequent S
henceforth we will denote by LHS(S) its left hand side and by RHS(S) its
right hand side. Let S := Γ1,Γ2 ⇒ Π, we indicate by S[Γ1/Σ]l the sequent
Σ,Γ2 ⇒ Π.

As in the case of sequent calculus, the hypersequent calculus consists of
initial axioms, logical rules, the cut-rule and structural rules. Initial axioms,
logical rules and the cut-rule are essentially the same as in the sequent calcu-
lus. The only difference is that a (possibly empty) side hypersequent G may
occur in hypersequents. The structural rules are divided into two groups: in-
ternal structural rules and external structural rules. The former are applied to
formulas within sequents. External rules instead manipulate the components
of a hypersequent and therefore increase the expressive power of hypersequent
calculus with respect to sequent calculus.

The notion of proof in HMTL is defined as usual. Let R be a set of rules. If
there is a proof in HMTL extended with R (HMTL+R, for short) of a sequent
S0 from a set of sequents S, we say that S0 is derivable from S in HMTL+R
and write S `HMTL+R S0 . We write `HMTL+R α if ∅ `HMTL+R⇒ α.

Two hypersequent rules (hr0) and (hr1) are equivalent (in HMTL) if the
relations `HMTL+(hr0) and `HMTL+(hr1) coincide when restricted to sequents.

2.1 Substructural Hierarchy

The substructural hierarchy is a novel classification of Hilbert axioms based on
the logical connectives of MTL.

Definition 2 (Substructural Hierarchy) [2] Let A be a set of atomic for-
mulas. For n ≥ 0, the sets Pn,Nn of formulas are defined as follows:

2

P0

�� !!B
BB

BB
BB

B
// P1

!!B
BB

BB
BB

B
// P2

!!B
BB

BB
BB

B
// P3

!!B
BB

BB
BB

B
// P4

 B
BB

BB
BB

BB
// . . .

N0

OO ==||||||||
// N1

==||||||||
// N2

==||||||||
// N3

==||||||||
// N4

>>|||||||||
// . . .

Figure 1: The substructural hierarchy [2]

P0 ::= N0 ::= A
Pn+1 ::= Nn | Pn+1 · Pn+1 | Pn+1 ∨ Pn+1 | 1
Nn+1 ::= Pn | Pn+1 → Nn+1 | Nn+1 ∧Nn+1 | 0

A graphical representation of the substructural hierarchy is depicted in Figure 1.
Note that the arrows → stand for inclusions ⊆ of the classes.

2.2 From axioms to analytic rules

The axiom ¬(α · β)∨ (α∧ β → α · β) is within the class P3 of the substructural
hierarchy [2]. Using the algorithm in [2], the axiom

¬(α · β) ∨ (α ∧ β → α · β)

can be transformed into the following rule to be added to the hypersequent cal-
culus HMTL:

G | Γ1,Γ1,∆1 ⇒ Π1

G | Γ2,Γ1,∆1 ⇒ Π1

G | Γ2,Γ3,∆1 ⇒ Π1

G | Γ1,Γ3,∆1 ⇒ Π1

G | Γ2,Γ3 ⇒| Γ1,∆1 ⇒ Π1

Theorem 3 (Soundness and Completeness.) The axiom ¬(α·β)∨(α∧β →
α · β) is equivalent to the newly generated rule.

Proof. See [2].

Theorem 4 (Cut-Admissibility.) The cut rule is admissible in the calculus
HMTL extended with the newly generated rule.

Proof. See [2].

A cut-elimination procedure can be found in [4].

3 Standard completeness for MTL+¬(α ·β)∨(α∧
β → α · β)

Let (r) be any hypersequent rule generated by the procedure in [2] where Si, Cj

denote sequents

G | S1 . . . G | Sm
G | C1 | . . . | Cq

3

Definition 5 Let G|Si and G|Sj be among the premises of (r).

(0-pivot) G|Si is a 0-pivot if there is an s ∈ {1, . . . , q} such that RHS(Si) =
RHS(Cs) and the different metavariables in the LHS(Si) are contained
in those of LHS(Cs).

(n-pivot) G|Sj is an n-pivot for G|Si, for n > 0, if the following conditions hold:

– G|Sj is a 0-pivot

– RHS(Si) = RHS(Sj)

– LHS(Sj) = LHS(Si[
Γ1/∆1 , . . .

Γn /∆n]l) for Γ1, . . .Γn ∈ LHS(Si)
and ∆1, . . .∆n ∈ LHS(Sj)

– G|Sj is a (n-1)-pivot for n premises G|Sj1 , .. ,G|Sjn , and for i = 1..n
LHS(Sj) = LHS(Sji [

Γ1/∆1
, . . . ,Γi−1 /∆i−1

, . . . ,Γi+1 /∆i+1
,Γn /∆n

]l)

Definition 6 A completed hypersequent rule (r) is convergent if for each premise
G|Si one of the following conditions holds: (1) RHS(Si) = ∅, (2) G|Si is a 0-
pivot, or (3) there is a premise G|Sj which is an n-pivot for G|Si, with n > 0.

Lemma 7 The rule equivalent to the axiom ¬(α · β) ∨ (α ∧ β → α · β) is
convergent.

Proof. Consider again the generated rule:

G | Γ1,Γ1,∆1 ⇒ Π1

G | Γ2,Γ1,∆1 ⇒ Π1

G | Γ2,Γ3,∆1 ⇒ Π1

G | Γ1,Γ3,∆1 ⇒ Π1

G | Γ2,Γ3 ⇒| Γ1,∆1 ⇒ Π1

The premise(s) of the rule satisfy conditions (1)-(3) in Definition 6. Indeed:

• The following premises are a 0-pivot:
G | Γ1,Γ1,∆1 ⇒ Π1

• There exists a 1-pivot for the following premises:
G | Γ1,Γ3,∆1 ⇒ Π1 G | Γ2,Γ1,∆1 ⇒ Π1

• There exists a 2-pivot for the following premises:
G | Γ2,Γ3,∆1 ⇒ Π1

Theorem 8 The logic formalized by the calculus HMTL extended with any con-
vergent rule is standard complete.

Proof. See [1].

Hence, MTL extended with ¬(α · β) ∨ (α ∧ β → α · β) is standard complete.

References

[1] P. Baldi, A. Ciabattoni, and L. Spendier. Standard completeness for ex-
tensions of MTL: an automated approach. In Proceedings of Int. Workshop
on Logic, Language, Information and Computation (WoLLIC 2012), LNCS,
pages 154–167, 2012.

4

[2] A. Ciabattoni, N. Galatos, and K. Terui. From axioms to analytic rules
in nonclassical logics. In IEEE Symposium on Logic in Computer Science
(LICS 08), pages 229–240, 2008.

[3] A. Ciabattoni and L. Spendier. Tools for the Investigation of Substructural
and Paraconsistent Logics. In Proceedings of JELIA 2014, LNAI, pages
18–32, 2014.

[4] A. Ciabattoni, L. Straßburger, and K. Terui. Expanding the realm of sys-
tematic proof theory. In Proceedings of Computer Science Logic (CSL 09),
LNCS, pages 163–178, 2009.

5

C.2 Example LATEX-output of Framinator

The following pages contain the file generated by Framinator for the example shown in
Section 5.4.1.

165

A labelled calculus for G3I extended with the

frame condition

∀x, y, z∃w(x ≤ y ∧ x ≤ z → y ≤ w ∧ z ≤ w)

Framinator∗

September 7, 2014

Abstract

We introduce a cut-free labelled calculus for the intermediate logic
defined by extending G3I with the frame condition ∀x, y, z∃w(x ≤ y ∧
x ≤ z → y ≤ w ∧ z ≤ w). The calculus is generated by the Prolog-
tool Framinator (FRAMe condItioNs Automatically TO Rules), which
implements the procedure in [1].

1 Introduction

Intermediate logics, i.e., logics between intuitionistic and classical logic, have
a natural Kripke semantics defined by imposing conditions on the standard
intuitionistic frame. Cut-free labelled systems [3, 5, 4] have been provided for a
large class of intermediate logics in a modular way in [2]. The resulting calculi
are indeed defined by adding to the base labelled calculus for intuitionistic logic
extra structural rules corresponding to the frame conditions — that are formulas
of first-order classical logic — characterizing the considered logic.

In this paper, we introduce a cut-free labelled calculus for the logic obtained
by extending G3I with the frame condition ∀x, y, z∃w(x ≤ y∧x ≤ z → y ≤ w∧
z ≤ w). The calculus is obtained via a Prolog-implementation of the procedure
in [1], where a classification of the frame conditions according to their quantifier
alternation and an algorithm to automatically create structural rules out of
them are introduced.

2 Preliminaries

The language of propositional intermediate logics consists of infinitely many
propositional variables p, q . . ., the connectives & (conjunction), ∨ (disjunction),
⊃ (implication), and the constant ⊥ for falsity. ϕ,ψ, . . . are formulas built
from atoms by using connectives and ⊥. Multisets of formulas are denoted by
Γ,∆,

An intuitionistic frame is a pair F = 〈W,6〉 where W is a non-empty set, and
6 is a reflexive and transitive (accessibility) relation on W . An intuitionistic

∗http://www.logic.at/tinc/webframinator/

1

x 6 y, x : p,Γ⇒ ∆, y : p

x : ϕ, x : ψ,Γ⇒ ∆

x : ϕ&ψ,Γ⇒ ∆
L&

Γ⇒ ∆, x : ϕ Γ⇒ ∆, x : ψ

Γ⇒ ∆, x : ϕ&ψ
R&

x : ⊥,Γ⇒ ∆
L⊥

Γ⇒ ∆, x : ϕ, x : ψ

Γ⇒ ∆, x : ϕ ∨ ψ R∨
x : ϕ,Γ⇒ ∆ x : ψ,Γ⇒ ∆

x : ϕ ∨ ψ,Γ⇒ ∆
L∨

x 6 x,Γ⇒ ∆

Γ⇒ ∆
Ref

x 6 y, y : ϕ,Γ⇒ ∆, y : ψ

Γ⇒ ∆, x : ϕ ⊃ ψ R⊃
x 6 z, x 6 y, y 6 z,Γ⇒ ∆

x 6 y, y 6 z,Γ⇒ ∆
Trans

x 6 y, x : ϕ ⊃ ψ,Γ⇒ ∆, y : ϕ x 6 y, x : ϕ ⊃ ψ, y : ψ,Γ⇒ ∆

x 6 y, x : ϕ ⊃ ψ,Γ⇒ ∆
L⊃

Table 1: Labelled calculus G3I for intuitionistic logic [2]

model M = 〈F,〉 is a frame F together with a relation (called the forcing)
between elements of W and atomic formulas. Intuitively, x p means that the
atom p is true at x. Forcing is assumed to be monotonic w.r.t. the relation 6,
namely, if x 6 y and x p then also y p. It is defined inductively on arbitrary
formulas as follows:

(⊥) x ⊥ for no x
(&) x ϕ&ψ iff x ϕ and x ψ
(∨) x ϕ ∨ ψ iff x ϕ or x ψ
(⊃) x ϕ ⊃ ψ iff x 6 y and y ϕ implies y ψ.

Intermediate logics are obtained from intuitionistic logic by imposing on in-
tuitionistic frames additional conditions on the relation 6. The latter conditions
are usually expressed as formulas of first-order classical logic in which variables
are interpreted as elements of W , and the binary predicate 6 denotes the acces-
sibility relation of F. Atomic formulas are relational atoms of the form x 6 y.
Compound formulas are built from relational atoms using the propositional con-
nectives ∧, ∨, →, ¬, and the quantifiers ∀ and ∃.

Labelled systems are a variant of sequent calculus in which the relational
semantics of the formalized logics is made explicit part of the syntax [3, 5, 4]. In a
labelled system, each formula ϕ receives a label x, indicated by x : ϕ. The labels
are interpreted as possible worlds, and a labelled formula x : ϕ corresponds to
x ϕ. Moreover, labels may occur also in expressions for accessibility relation
(relational atoms) like, e.g., x 6 y of intuitionistic and intermediate logics.

Definition 1 A labelled sequent is a sequent consisting of labelled formulas and
relational atoms.

Table 1 depicts the labelled calculus G3I for intuitionistic logic. Note that its
logical rules are obtained directly from the inductive definition of forcing. The
rule R ⊃ must satisfy the eigenvariable condition (y does not occur in the con-
clusion). The structural rules Ref and Trans for relational atoms correspond
to the assumptions of reflexivity and transitivity of 6 in F.

2

3 From frame conditions to labelled rules

We introduce a classification of frame conditions that is basically the arithmeti-
cal hierarchy. W.l.o.g. we will consider formulas in prenex form. The class
to which a formula belongs is determined by the alternation of universal and
existential quantifiers in the prefix:

Definition 2 ([1]) The classes Πk and Σk are defined as follows: A ∈ Σ0 and
A ∈ Π0, if A is quantifier-free. Otherwise:

• if A is classically equivalent to ∃xB where B ∈ Πn then A ∈ Σn+1

• if A is classically equivalent to ∀xB where B ∈ Σn then A ∈ Πn+1

The transformation procedure introduced in [1] works for formulas that are
within Π2. Note that the geometric formulas introduced in [2] are formulas
within Π2, and the rules for geometric formulas presented in [2] are interderivable
with the rules generated by our transformation procedure.
The frame condition

• ∀x, y, z∃w(x ≤ y ∧ x ≤ z → y ≤ w ∧ z ≤ w)

is within the class Π2 of the hierarchy. Using the algorithm described in [1], we
transform the frame condition into the following structural rule:

Γ⇒ ∆, x ≤ y Γ⇒ ∆, x ≤ z y ≤ w, z ≤ w,Γ⇒ ∆

Γ⇒ ∆

Let G3SI∗ be the labelled calculus obtained by adding to G3I initial se-
quents of the form x ≤ y,Γ⇒ ∆, x ≤ y and the rule stated above.

Theorem 3 (Soundness and Completeness) G3SI∗ is sound and complete
for the logic defined by imposing on the standard intuitionistic frame the above
frame condition.

Proof. See [1].

Theorem 4 (Cut elimination) G3SI∗ admits cut elimination.

Proof. See [1].

References

[1] A. Ciabattoni, P. Maffezioli, and L. Spendier. Hypersequent and Labelled
Calculi for Intermediate Logics. In Proceedings of TABLEAUX 2013, D.
Galmiche and D. Larchey-Wendling (Eds.), LNCS 8123, pp. 81–96, 2013.

[2] R. Dyckhoff and S. Negri. Proof analysis in intermediate logics. Archive for
Mathematical Logic, 51(1-2): 71–92, 2012.

[3] D. Gabbay. Labelled Deductive Systems: Foundations. Oxford Univ. Press,
1996.

[4] S. Negri. Proof analysis in non-classical logics. In Logic Coll. 2005, pp.
107–128, 2007.

[5] L. Vigano. Labelled Non-Classical Logics. Kluwer, 2000.

3

C.3 Example LATEX-output of Paralyzer

The following pages contain the file generated by Paralyzer for the example shown in
Section 6.6.1.

169

A sequent calculus and e↵ective semantics for BK

+ ?2↵ ! ?2(↵ ^ �), (?1↵ _ ?1�) !
?1(↵ ^ �), ?1 ?1 ↵ ! ↵

Paralyzer⇤

March 5, 2015

Abstract

We introduce a sequent calculus, its encoding in Isabelle and e↵ective
semantics using partial non-deterministic matrices for the Hilbert system
BK extended with the axioms ?2↵ ! ?2(↵ ^ �), (?1↵ _ ?1�) ! ?1(↵ ^
�), ?1?1↵! ↵. The calculus, its encoding and the semantics are generated
by the PROLOG-program Paralyzer (PARAconsistent logics anaLYZER),
which implements the procedure in [4, 5].

1 Introduction

Non-classical logics are often introduced using Hilbert systems. The usefulness
of these logics, however, strongly depends on two essential components. The
first is an intuitive semantics, which can provide insights into the logic. A desir-
able property of such semantics is e↵ectiveness, in the sense that it naturally in-
duces a decision procedure for the logic. Examples of e↵ective semantics include
finite-valued matrices, and their generalizations: non-deterministic finite-valued
matrices (Nmatrices) and partial Nmatrices (PNmatrices), see [1, 3]. The sec-
ond component is a corresponding analytic calculus, i.e. a calculus whose proofs
only consist of concepts already contained in the result. Analytic calculi are use-
ful for establishing various properties of the formalized logics, and are also the
key for developing automated reasoning methods for them.

In this paper we introduce a sequent calculus for the logic obtained by ex-
tending the Hilbert system BK with the axioms ?2↵! ?2(↵^�), (?1↵_?1�) !
?1(↵ ^ �), ?1 ?1 ↵ ! ↵. Recall that BK is an Hilbert axiomatization of CL+,
the positive fragment of classical propositional logic, extended with the axioms
?1↵ _ ↵, ?2↵ � (↵ ^ ?1↵ � �) and ?2↵ _ (↵ ^ ?2↵). Our calculus is used to
introduce a PNmatrix semantics for the considered logic. Though the resulting
calculus might not be analytic in the sense of [5], the corresponding PNmatrix
establishes the decidability of the considered logic [4, 5] and can be used to
define a family of analytic sequent calculi for it, using the method in [2]. In
addition, we provide an encoding of the introduced calculus for the automated
theorem prover Isabelle [7]. This allows us to perform (semi-)automated proof
search within the logic.

⇤http://www.logic.at/tinc/webparalyzer/

1

↵) ↵ (init)
�,↵) �

�) ↵ � �,�
(�, r)

�) ↵,� �,�) �

�,↵ � �) �
(�, l)

�) �
�) �,↵

(w, r)
�,↵,�) �

�,↵ ^ �) �
(^, l)

�) ↵,� �) �,�

�) ↵ ^ �,�
(^, r)

�) �
�,↵) �

(w, l)
�) ↵,�,�

�) ↵ _ �,�
(_, r)

�,↵) � �,�) �

�,↵ _ �) �
(_, l)

�,↵) �

�) �, ?1↵
(?1, r)

�, ?1↵,↵) �

�) �, ?2↵
(?2, r)

�) ↵,� �) ?1↵,�

�, ?2↵) �
(?2, l)

�) �,↵ ↵,�) �

�) �
(cut)

Table 1: the sequent system for BK

2 Preliminaries

In what follows L is the language of CL+, consisting of atomic formulas {pi},
the binary connectives ^ (conjunction), _ (disjunction) and � (implication)
extended with the unary connectives {?1, ?2}.

In this paper, metavariables ↵,�,', . . . denote formulas, and �,�, . . . stand
for finite (possibly empty) multisets of formulas.

A sequent calculus G for L consists of a finite set of rules. We write S `G s
whenever the sequent s is derivable from the set S of sequents in G.

Definition 1 A sequent calculus G is equivalent to a Hilbert system H if for
every finite set � [{'} of formulas: ' is provable in H from � (in symbols
� `H ') i↵ �) ' is provable in G (in symbols `G �) ').

We denote by H the Hilbert system for L obtained by extending BK with
the axioms ?2↵ ! ?2(↵ ^ �), (?1↵ _ ?1�) ! ?1(↵ ^ �), ?1 ?1 ↵ ! ↵. We
define a sequent calculus G for L, which is equivalent to H, by extending the
sequent system for BK (see Table 1) with logical rules corresponding to the
aforementioned axioms. From the obtained sequent calculus, we will extract
e↵ective semantics using partial non-deterministic matrices (PNmatrices), which
are a generalization of non-deterministic finite-valued matrices (Nmatrices) [1].

Definition 2 A partial non-deterministic matrix (PNmatrix) M for L consists
of: (i) a set VM of truth values, (ii) a subset DM ✓ VM (designated truth
values), and (iii) a truth-table ⇧M : VM

n ! P (VM) for every n-ary connective
⇧ of L.

Remark. If there are no empty spots in the PNmatrix, i.e., the set of truth
values VM is not empty and no truth table contains a P (VM) = ;, the PNmatrix
is an ordinary Nmatrix.

Definition 3 Let M be a PNmatrix for L.

1. An M-valuation for L is a function v : L ! VM that respects the truth
tables of M, i.e. v(⇧('1, . . . ,'n)) 2 ⇧M(v('1), . . . , v('n)) for every com-
pound formula ⇧('1, . . . ,'n) 2 L.

2

2. An M-valuation v for L satisfies an L-formula ' (with respect to M;
denoted by v |=M ') if v(') 2 DM.

3. Given an L-sequent s, `M s if v |=M s for every M-valuation v for L.

3 Sequent calculus and e↵ective semantics

3.1 From axiom to rules

Using the algorithm described in [4, 5], the axioms

?2↵! ?2(↵ ^ �), (?1↵ _ ?1�) ! ?1(↵ ^ �), ?1 ?1 ↵! ↵

are transformed into the following logical rules:

�, ?1↵) � �) ↵,� �) �,�

�, ?1(↵ ^ �)) �

�) ?1↵,�

�) ?1(↵ ^ �),�

�) ?1�,�

�) ?1(↵ ^ �),�

�,↵) �

�, ?1 ?1 ↵) �

Let G be the sequent calculus obtained by extending the calculus for the
sequent system for BK (see Table 1) with the above rules.

Theorem 4 G is equivalent to H.

Proof. See [4, 5].

3.2 From rules to semantics

The sequent calculus G is used to extract semantics for the considered logic.
The PNmatrix M for G is defined as follows:

VM = {011, 101, 110}
DM = {101, 110}

The truth tables for the unary connectives are as follows:

?1

011 {101}
101 {011}
110 {101, 110}

?2

011 {101, 110}
101 {101, 110}
110 {011}

The truth tables for the binary connectives are as follows:

3

ê 011 101 110

011 {011} {011} {011}
101 {011} {101} ;
110 {011} {110} {110}

e_ 011 101 110

011 {011} {101, 110} {101, 110}
101 {101, 110} {101, 110} {101, 110}
110 {101, 110} {101, 110} {101, 110}
e� 011 101 110

011 {101, 110} {101, 110} {101, 110}
101 {011} {101, 110} {101, 110}
110 {011} {101, 110} {101, 110}

Theorem 5 (Soundness and Completeness) `G s i↵ `M s.

Proof. See [4, 5].

Theorem 6 (Decidability) Given a finite set � [{'} of formulas, it is de-
cidable whether � `H ' or not.

Proof. See [4, 5].

Remark. There are empty spots in the truth tables of the connectives. Hence,
the sequent calculus G might not be analytic. However, a family of cut-free
sequent calculi for L can be constructed starting from the PNmatrix M, using
the method in [2], see [4, 5] for details.

3.3 An Isabelle-encoding of G

We provide an encoding of the sequent calculus G for the generic proof assis-
tant Isabelle [7] which leads to a (semi-)automated theorem prover for the logic
underlying the calculus. Note that in the encoding, a single formula is denoted
by an upper-case letter (e.g., P) whereas (possibly empty) sequences of formulas
are denoted by upper-case letters preceded with a $ sign (e.g., $H, $G, $E,$F).
Premises are encoded left of ==> and the conclusion of the rule is encoded right
of ==>. If there is more than one premise, the premises are within brackets [|,
|] and comma-separated (;). We use ⇠ to denote ?1 and + for ?2 .

Encoding: ParalyzerEncoding.thy

(* Title: Sequents/ParalyzerEncoding.thy

Author: Paralyzer, Vienna University of Technology

based on LK0.thy by L. Paulson, University of Cambridge

Copyright 2013 Vienna University of Technology

*)

header {* Propositonal Paraconsistent Logic BK +

(*2 a-> *2 (a&b);*1 a v *1 b-> *1 (a&b);*1*1 a->a) *}

theory ParalyzerEncoding

imports Sequents

4

begin

consts

Trueprop :: "two_seqi"

conj :: "[o,o] => o" (infixr "&" 35)

disj :: "[o,o] => o" (infixr "|" 30)

imp :: "[o,o] => o" (infixr "-->" 25)

not :: "o => o" ("~ _" [40] 40)

circ :: "o => o" ("+ _" [39] 39)

syntax

"_Trueprop" :: "two_seqe" ("((_)/ |- (_))" [6,6] 5)

parse_translation {* [(@{syntax_const "_Trueprop"},

two_seq_tr @{const_syntax Trueprop})] *}

print_translation {* [(@{const_syntax Trueprop},

two_seq_tr’ @{syntax_const "_Trueprop"})] *}

axioms

(*Structural rules: contraction, thinning, exchange*)

contRS: "$H |- $E, $S, $S, $F ==> $H |- $E, $S, $F"

contLS: "$H, $S, $S, $G |- $E ==> $H, $S, $G |- $E"

thinRS: "$H |- $E, $F ==> $H |- $E, $S, $F"

thinLS: "$H, $G |- $E ==> $H, $S, $G |- $E"

exchRS: "$H |- $E, $R, $S, $F ==> $H |- $E, $S, $R, $F"

exchLS: "$H, $R, $S, $G |- $E ==> $H, $S, $R, $G |- $E"

cut: "[| $H |- $E, P; $H, P |- $E |] ==> $H |- $E"

(*Propositional rules*)

basic: "$H, P, $G |- $E, P, $F"

conjR: "[| $H|- $E, P, $F; $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F"

conjL: "$H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E"

disjR: "$H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F"

disjL: "[| $H, P, $G |- $E; $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E"

impR: "$H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F"

impL: "[| $H,$G |- $E,P; $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E"

(** new **)

notR: "$H, P |- $E, $F ==> $H |- $E, ~P, $F"

circR: "$H, P, ~P |- $E, $F ==> $H |- $E, +P, $F"

circL: "[| $H, $G |- $E, P; $H, $G |- $E, ~P |] ==> $H, +P, $G |- $E"

ruleStar1: "[| $G,~P,$H |- $E; $G, $H |- $E, P; $G, $H |- $E, Q|] ==> $G,~(P&Q),$H |- $E"

ruleStar2: "$G |- $E, ~P,$F ==> $G |- $E, ~(P&Q),$F"

ruleStar3: "$G |- $E, ~Q,$F ==> $G |- $E, ~(P&Q),$F"

5

ruleStar4: "$G,P,$H |- $E ==> $G,~~P,$H |- $E"

(** Structural Rules on formulas **)

(*contraction*)

lemma contR: "$H |- $E, P, P, $F ==> $H |- $E, P, $F"

by (rule contRS)

lemma contL: "$H, P, P, $G |- $E ==> $H, P, $G |- $E"

by (rule contLS)

(*thinning*)

lemma thinR: "$H |- $E, $F ==> $H |- $E, P, $F"

by (rule thinRS)

lemma thinL: "$H, $G |- $E ==> $H, P, $G |- $E"

by (rule thinLS)

(*exchange*)

lemma exchR: "$H |- $E, Q, P, $F ==> $H |- $E, P, Q, $F"

by (rule exchRS)

lemma exchL: "$H, Q, P, $G |- $E ==> $H, P, Q, $G |- $E"

by (rule exchLS)

(*Tactic*)

ML {*

val apply_tac =

let

val rules = @{thms basic conjL conjR disjL disjR impL impR

notR circR circL ruleStar1 ruleStar2 ruleStar3 ruleStar4}

in

atac

ORELSE’ resolve_tac rules

end

*}

end

References

[1] A. Avron and A. Zamansky. Non-deterministic semantics for logical systems
- A survey. In D. Gabbay and F. Guenther, editors, Handbook of Philosoph-
ical Logic, volume 16, pages 227–304. Springer, 2011.

[2] A. Avron, J. Ben-Naim, and B. Konikowska. Cut-free ordinary sequent cal-
culi for logics having generalized finite-valued semantics. Logica Universalis,
1:41–69, 2006.

6

[3] M. Baaz, O. Lahav, and A. Zamansky. Finite-valued Semantics for Canonical
Labelled Calculi. Journal of Automated Reasoning, 51(4):401–430, 2013.

[4] A. Ciabattoni, O. Lahav, L. Spendier and A. Zamansky. Automated Support
for the Investigation of Paraconsistent and Other Logics. In Logical Founda-
tions of Computer Science (Lecture Notes in Computer Science), Vol. 7734.
Springer, 119–133.

[5] A. Ciabattoni, O. Lahav, L. Spendier and A. Zamansky. Taming Para-
consistent (and Other) Logics: An Algorithmic Approach. Accepted for
publication in ACM Transactions on Computational Logic (TOCL), 2014.

[6] A. Ciabattoni and L. Spendier. Tools for the Investigation of Substructural
and Paraconsistent Logics. In Proceedings of JELIA 2014, LNAI, pages
18–32, 2014.

[7] M. Wenzel, L. C. Paulson and T. Nipkow. The Isabelle Framework. In
Proceedings of Theorem Proving in Higher Order Logics 2008 (Lecture Notes
in Computer Science). 33–38, 2008.

7

Bibliography

[1] P. Abate and R. Goré. The Tableaux Work Bench. In Proceedings of Automated
Reasoning with Analytic Tableaux and Related Methods, LNCS, pages 230–236,
2003.

[2] R. Alenda, N. Olivetti, and G. L. Pozzato. Nested sequent calculi for conditional
logics. In L. F. del Cerro, A. Herzig, and J. Mengin, editors, Proceedings of the
European Conference on Logics in Artifical Intelligence (JELIA), volume 7519 of
LNCS, pages 14–27, 2012.

[3] A. Almukdad and D. Nelson. Constructible falsity and inexact predicates. Journal
of Symbolic Logic, 49:231–233, 1984.

[4] A. R. Anderson and N. D. Belnap. Entailment: The Logic of Relevance and Ne-
cessity. Princeton University Press, Princeton, 1975.

[5] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal
of Logic and Computation, 2(3):297–347, 1992.

[6] O. Arieli and A. Avron. Reasoning with logical bilattices. Journal of Logic, Lan-
guage and Information, 5(1):25–63, 1996.

[7] F. G. Asenjo. A calculus of antinomies. Notre Dame Journal of Formal Logic,
7(1):103–105, 1966.

[8] A. Avellone, M. Ferrari, and P. Miglioli. Duplication-free tableau calculi and related
cut-free sequent calculi for the interpolable propositional intermediate logics. Logic
Journal of the IGPL, 7(4):447–480, 1999.

[9] A. Avron. A constructive analysis of RM. Journal of Symbolic Logic, 52(4):939–951,
1987.

[10] A. Avron. Hypersequents, logical consequence and intermediate logics for concur-
rency. Annals of Mathematics and Artificial Intelligence, 4(3-4):225–248, 1991.

[11] A. Avron. The method of hypersequents in the proof theory of propositional non-
classical logics. In W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, editors,
Logic: from foundations to applications, pages 1–32. Clarendon Press, 1996.

177

[12] A. Avron. Non-deterministic matrices and modular semantics of rules. Logica
Universalis, pages 155–173, 2007.

[13] A. Avron. Non-deterministic Semantics for Families of Paraconsistent Logics. In J.-
Y. Beziau, W. A. Carnielli, and D. Gabbay, editors, Handbook of Paraconsistency,
volume 9 of Studies in Logic, pages 285–320. College Publications, 2007.

[14] A. Avron, J. Ben-Naim, and B. Konikowska. Cut-free ordinary sequent calculi for
logics having generalized finite-valued semantics. Logica Universalis, 1:41–69, 2006.

[15] A. Avron and B. Konikowska. Proof systems for logics based on non-deterministic
multiple-valued structures. Logic Journal of the IGPL, 13:365–387, 2005.

[16] A. Avron, B. Konikowska, and A. Zamansky. A systematic generation of analytic
calculi for Logics of Formal Inconsistency. In J.-Y. Beziau and M. E. Coniglio,
editors, Logic without Frontiers: Festschrift for W.A. Carnielli on the occasion of
his 60th Birthday, volume 17 of Tribute. College Publications, 2011.

[17] A. Avron, B. Konikowska, and A. Zamansky. Modular construction of cut-free
sequent calculi for paraconsistent logics. In Logic in Computer Science (LICS),
2012 27th Annual IEEE Symposium on, pages 85–94, 2012.

[18] A. Avron, B. Konikowska, and A. Zamansky. Cut-free sequent calculi for C-
systems with generalized finite-valued semantics. Journal of Logic and Compu-
tation, 21(3):517–540, 2013.

[19] A. Avron and I. Lev. Canonical propositional Gentzen-type systems. In R. Goré,
A. Leitsch, and T. Nipkow, editors, Proceedings of the International Joint Con-
ference on Automated Reasoning (IJCAR), volume 2083 of LNAI, pages 529–544,
2001.

[20] A. Avron and I. Lev. Non-deterministic multiple-valued structures. Journal of
Logic and Computation, 15(3):241–261, 2005.

[21] M. Baaz, A. Ciabattoni, and F. Montagna. Analytic calculi for monoidal t-norm
based logic. Fundamenta Informaticae, 59(4):315–332, 2004.

[22] M. Baaz, C. G. Fermüller, G. Salzer, and R. Zach. MUltlog 1.0: Towards an expert
system for many-valued logics. In Proceedings of the International Conference on
Automated Deduction (CADE), LNCS, pages 226–230, 1996.

[23] M. Baaz, O. Lahav, and A. Zamansky. Finite-valued semantics for canonical la-
belled calculi. Journal of Automated Reasoning, 51(4):401–430, 2013.

[24] M. Baaz and R. Zach. Hypersequents and the proof theory of intuitionistic fuzzy
logic. In Proceedings of Computer Science Logic (CSL), volume 1862 of LNCS,
pages 187–201, 2000.

178

[25] P. Baldi. A note on standard completeness for some extensions of uninorm logic.
Soft Computing, 18(8):1463–1470, 2014.

[26] P. Baldi and A. Ciabattoni. Standard completeness for uninorm-based logics. In Ac-
cepted for the IEEE International Symposium on Multiple-Valued Logics (ISMVL),
2015.

[27] P. Baldi and A. Ciabattoni. Uniform proofs of standard completeness for extensions
of first-order MTL. Theoretical Computer Science, Accepted for publication.

[28] P. Baldi, A. Ciabattoni, and L. Spendier. Standard completeness for extensions of
MTL: an automated approach. In L. Ong and R. Queiroz, editors, Proceedings of
Logic, Language, Information, and Computation (WoLLIC), volume 7456 of LNCS,
pages 154–167. Springer, 2012.

[29] S. Barro and R. Marin, editors. Fuzzy Logic in Medicine, volume 83 of Studies in
Fuzziness and Soft Computing. Springer, 2002.

[30] D. Batens. Dialectical dynamics within formal logics. Logique et Analyse, 114:161–
173, 1986.

[31] D. Batens. Dynamic dialectical logics. In G. Priest, R. Routley, and J. Norman, ed-
itors, Paraconsistent Logic. Essays on the Inconsistent, pages 187–217. Philosophia
Verlag, München, 1989.

[32] D. Batens. The need for adaptive logics in epistemology. In S. Rahman, J. Symons,
D. Gabbay, and J. P. van Bendegem, editors, Logic, Epistemology, and the Unity
of Science, pages 459–485. Kluwer Academic Publishers, 2004.

[33] N. D. Belnap. A useful four-valued logic. In J. M. Dunn and G. Eppstein, editors,
Modern Uses of Multiple-Valued Logic, pages 7–37. Reidel, Dordrecht, 1977.

[34] N. D. Belnap. Display logic. Journal of Philosophical Logic, 11(4):375–417, 1982.

[35] C. Benzmüller and B. Woltzenlogel Paleo. Automating Gödel’s ontological proof
of God’s existence with higher-order automated theorem provers. In T. Schaub,
G. Friedrich, and B. O’Sullivan, editors, Proceedings of 21st European Conference
on Artificial Intelligence (ECAI 2014), pages 93–98, 2014.

[36] L. Bertossi, A. Hunter, and T. Schaub. Introduction to inconsistency tolerance.
In L. Bertossi, A. Hunter, and T. Schaub, editors, Inconsistency Tolerance, pages
1–14. Springer, 2005.

[37] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development
– Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

179

[38] N. Bezhanishvili and S. Ghilardi. Bounded proofs and step frames. In D. Galmiche
and D. Larchey-Wendling, editors, Proceedings of Automated Reasoning with Ana-
lytic Tableaux and Related Methods, volume 8123 of LNCS, pages 44–58. Springer,
2013.

[39] N. Bezhanishvili and S. Ghilardi. The bounded proof property via step algebras
and step frames. Annals of Pure and Applied Logic, 165(12):1832–1863, 2014.

[40] J. Brotherston. Bunched logics displayed. Studia Logica, 100(6):1223–1254, 2012.

[41] K. Brünnler. Deep sequent systems for modal logic. Archive for Mathematical
Logic, 48(6):551–577, 2009.

[42] K. Brünnler. Nested sequents. habilitation thesis, Universität Bern, 2010.

[43] S. R. Buss, editor. Handbook Proof Theory. Elsevier, 1998.

[44] S. R. Buss. An introduction to proof theory, pages 1–78. Handbook Proof Theory.
Elsevier, 1998.

[45] W. A. Carnielli, M. E. Coniglio, and J. Marcos. Logics of formal inconsistency. In
D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 14,
pages 15–107. Springer, 2007.

[46] W. A. Carnielli and J. Marcos. Tableau systems for logics of formal inconsistency.
In Proceedings of the International Conference on Artificial Intelligence (ICAI),
pages 848–852, 2001.

[47] W. A. Carnielli and J. Marcos. A taxonomy of C-systems. In W. A. Carnielli,
M. E. Coniglio, and I. D’Ottaviano, editors, Paraconsistency: The Logical Way to
the Inconsistent, number 228 in Lecture Notes in Pure and Applied Mathematics,
pages 1–94. Marcel Dekker, 2002.

[48] C. Castellini. Automated Reasoning in Quantified Modal and Temporal Logics. PhD
thesis, University of Edinburgh, 2004.

[49] A. Chagrov and M. Zakharyaschev. Modal Logic. Clarendon Press, Oxford, 1997.

[50] A. Ciabattoni, F. Esteva, and L. Godo. T-norm based logics with n-contraction.
Neural Network World, 12(5):441–452, 2002.

[51] A. Ciabattoni and M. Ferrari. Hypertableau and path-hypertableau calculi for
some families of intermediate logics. In Proceedings of Automated Reasoning with
Analytic Tableaux and Related Methods, volume 1847 of LNAI, pages 160–175, 2000.

[52] A. Ciabattoni, N. Galatos, and K. Terui. From axioms to analytic rules in non-
classical logics. In 23rd Annual IEEE Symposium on Logic in Computer Science,
2008 (LICS ’08), pages 229–240, 2008.

180

[53] A. Ciabattoni, N. Galatos, and K. Terui. MacNeille completions of FL-algebras.
Algebra Universalis, 66(4):229–240, 2011.

[54] A. Ciabattoni, N. Galatos, and K. Terui. Algebraic proof theory for substruc-
tural logics: cut-elimination and completions. Annals of Pure and Applied Logic,
163(3):266–290, 2012.

[55] A. Ciabattoni, O. Lahav, L. Spendier, and A. Zamansky. Automated support
for the investigation of paraconsistent and other logics. In Proceedings of Logical
Foundations of Computer Science (LFCS), volume 7734 of LNCS, pages 119–133.
Springer, 2013.

[56] A. Ciabattoni, O. Lahav, L. Spendier, and A. Zamansky. Taming paraconsistent
(and other) logics: An algorithmic approach. ACM Transactions on Computational
Logic, 16(1):5:1–5:23, 2015.

[57] A. Ciabattoni, P. Maffezioli, and L. Spendier. Hypersequent and labelled calculi for
intermediate logics. In D. Galmiche and D. Larchey-Wendling, editors, Proceedings
of Automated Reasoning with Analytic Tableaux and Related Methods, volume 8123
of LNCS, pages 81–96. Springer, 2013.

[58] A. Ciabattoni and G. Metcalfe. Density elimination. Theoretical Computer Science,
403(2-3):328–346, 2008.

[59] A. Ciabattoni and R. Ramanayake. Structural extensions of display calculi: a
general recipe. In L. Libkin, U. Kohlenbach, and R. Queiroz, editors, Proceedings
of Logic, Language, Information, and Computation (WoLLIC), volume 8071 of
LNCS, pages 81–95. Springer, 2013.

[60] A. Ciabattoni, R. Ramanayake, and H. Wansing. Hypersequent and display calculi
– a unified perspective. Studia Logica, 102(6):1245–1294, 2014.

[61] A. Ciabattoni and L. Spendier. Tools for the investigation of substructural and
paraconsistent logics. In E. Fermé and J. Leite, editors, Proceedings of the European
Conference on Logics in Artifical Intelligence (JELIA), volume 8761 of LNAI, pages
18–32, 2014.

[62] A. Ciabattoni, L. Straßburger, and K. Terui. Expanding the realm of systematic
proof theory. In E. Grädel and R. Kahle, editors, Proceedings of Computer Science
Logic (CSL), volume 5771 of LNCS, pages 163–178, 2009.

[63] N. C. A. Da Costa. On the theory of inconsistent formal systems. Notre Dame
Journal of Formal Logic, 15:497–510, 1974.

[64] M. D’Agostino and D. Gabbay. A generalization of analytic deduction via labelled
deductive systems I: Basic substructural logics. Journal of Automated Reasoning,
13:243–281, 1994.

181

[65] M. D’Agostino and M. Mondadori. The taming of the cut. classical refutations
with analytic cut. Journal of Logic and Computation, 4(3):285–319, 1994.

[66] J. E. Dawson and R. Goré. Embedding display calculi into logical frameworks:
Comparing Twelf and Isabelle. Electronic Notes in Theoretical Computer Science,
42:89–103, 2001.

[67] J. E. Dawson and R. Goré. Formalised cut admissibility for display logic. In V. A. C.
an dCésar A. Munoz and S. Tahar, editors, Proceedings of Theorem Proving in
Higher Order Logic (TPHOL), volume 2410 of LNCS, pages 131–147, 2002.

[68] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Standard Reference Man-
ual. Springer, 1996.

[69] I. D’Ottaviano and M. A. de Castro. Analytical tableaux for da costa’s hierarchy
of paraconsistent logics c_n, 1 ≤ n < ω. Journal of Applied Non-classical Logics,
15(1):69–103, 2005.

[70] I. D’Ottaviano and M. A. de Castro. Analytical tableaux for da Costa’s hierar-
chy of paraconsistent logics. In Proceedings of Logic, Language, Information, and
Computation (WoLLIC), volume 143 of Electronic Notes in Theoretical Computer
Science, pages 27–44, 2006.

[71] M. Dummett. A propositional calculus with denumerable matrix. Journal of Sym-
bolic Logic, 24(2):97–106, 1959.

[72] J. M. Dunn. Intuitive semantics for first-degree entailment and ‘coupled trees’.
Philosophical Studies, 29(3):149–168, 1976.

[73] J. M. Dunn. Relevant logic and entailment. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, pages 117–224. Reidel, Dordrecht, 1986.

[74] J. M. Dunn. Gaggle theory: An abstraction of Galois connections and residuations
with applications to negation and various logical operations. In Proceedings of
the European workshop on Logics in Artifical Intelligence (JELIA), volume 478 of
LNCS, pages 31–51. Springer, 1991.

[75] J. M. Dunn. Partial gaggles applied to logics with restricted structural rules. In
K. Dosen and P. Schroeder-Heister, editors, Substructural Logics, pages 63–108.
Oxford University Press, 1993.

[76] R. Dyckhoff and S. Negri. Proof analysis in intermediate logics. Archive for Math-
ematical Logic, 51(1-2):71–92, 2012.

[77] F. Esteva, J. Gispert, L. Godo, and F. Montagna. On the standard and rational
completeness of some axiomatic extensions of the monoidal t-norm logic. Studia
Logica, 71(2):199–226, 2002.

182

[78] F. Esteva and L. Godo. Monoidal t-norm based logic: towards a logic for left-
continuous t-norms. Fuzzy Sets and Systems, 124(3):271–288, 2001.

[79] M. Ferrari and P. Miglioli. Counting the maximal intermediate constructive logics.
Journal of Symbolic Logic, 58(4):1364–1401, 1993.

[80] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht,
1983.

[81] M. Fitting. Prefixed tableaus and nested sequents. Annals of Pure and Applied
Logic, 163:291–313, 2012.

[82] M. Fitting. Nested sequents for intuitionistic logics. Notre Dame Journal of Formal
Logic, 55(1):41–61, 2014.

[83] D. Gabbay. Labelled Deductive Systems: Foundations. Clarendon Press, Oxford,
1996.

[84] D. Gabbay and H. J. Ohlbach. Quantifier elimination in second-order predicate
logic. South African Computer Journal, 7:35–43, 1992.

[85] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Algebraic
Glimpse at Substructural Logics, volume 151 of Studies in Logic and the Foundations
of Mathematics. Elsevier, 2007.

[86] D. Gallin. Intensional and Higher-Order Modal Logics. North-Holland, Amsterdam,
1975.

[87] O. Gasquet, A. Herzig, D. Longin, and M. Sahade. LoTREC: Logical tableaux
research engineering companion. In Proceedings of Automated Reasoning with An-
alytic Tableaux and Related Methods, volume 3702 of LNCS, pages 318–322, 2005.

[88] G. Gentzen. Untersuchungen über das Logische Schließen I und II. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935.

[89] A. J. Gil and G. Salzer. MUltseq: a generic prover for sequents and equations.
In Collegium Logicum: Annals of the Kurt-Gödel-Society. Kurt-Gödel-Society, Vi-
enna, 2001.

[90] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[91] K. Gödel. Zum intuitionistischen Aussagenkalkül. Anzeiger Akademie der Wis-
senschaften Wien, Math.-naturwissensch. Klasse, 69:65–66, 1932.

[92] R. Goré. Gaggles, Gentzen and Galois: How to display your favourite substructural
logic. Logic Journal of the IGPL, 6(5):669–694, 1998.

[93] R. Goré. Substructural logics on display. Logic Journal of the IGPL, 6(3):451–504,
1998.

183

[94] R. Goré, L. Postniece, and A. Tiu. Cut-elimination and proof search for bi-
intuitionistic tense logic. In L. Beklemishev, V. Goranko, and V. Shehtman, editors,
Proceedings of Advances in Modal Logic, volume 8, pages 156–177, 2010.

[95] R. Goré and R. Ramanayake. Labelled tree sequents, tree hypersequents and nested
(deep) sequents. In T. Bolander, T. Braüner, S. Ghilardi, and L. Moss, editors,
Proceedings of Advances in Modal Logic, volume 9 of College Publications, pages
279–299, 2012.

[96] A. Guglielmi. A system of interaction and structure. ACM Transactions on Com-
putational Logic, 8(1):1–64, 2007.

[97] P. Hájek. Metamathematics of Fuzzy Logic. Springer, 1998.

[98] C. Hewitt. Large-scale organizational computing requires unstratified reflection and
strong paraconsistency. In Coordination, Organizations, Institutions, and Norms
in Agent Systems III, volume 4870 of LNCS, pages 110–124, 2008.

[99] R. Horcik. Alternative proof of standard completeness theorem for mtl. Soft Com-
puting, 11(2):123–129, 2007.

[100] V. A. Jankov. Calculus of the weak law of the excluded middle. Izv. Akad. Nauk
SSSR Ser. Mat., 32:1044–1051, 1968.

[101] S. Jaśkowski. Propositional calculus for contradictory deductive system (commu-
nicated at the meeting of march 19, 1948). Studia Logica, 24:143–160, 1969.

[102] S. Jenei and F. Montagna. A proof of standard completeness for Esteva and Godo’s
logic MTL. Studia Logica, 70(2):183–192, 2002.

[103] J. A. Kalman. Automated Reasoning with OTTER. Rinton Press, 2001.

[104] N. Kamide. A cut-free system for 16-valued reasoning. Bulletin of the Section of
Logic, 34(4):213–225, 2005.

[105] N. Kamide. Proof systems combining classical and paraconsistent negations. Studia
Logica, 91(2):217–238, 2009.

[106] N. Kamide. A hierarchy of weak double negations. Studia Logica, 101(6):1277–1297,
2013.

[107] N. Kamide and H. Wansing. Sequent calculi for some trilattice logics. The Review
of Symbolic Logic, 2(2):374–395, 2009.

[108] N. Kamide and H. Wansing. Proof theory of Nelson’s paraconsistent logic: A
uniform perspective. Theoretical Computer Science, 415:1–38, 2011.

[109] R. Kashima. Cut-free sequent calculi for some tense logics. Studia Logica,
53(1):119–135, 1994.

184

[110] M. Kracht. Power and weakness of the modal display calculus. In H. Wansing,
editor, Proof Theory of Modal Logic, volume 2 of Applied Logic Series, pages 93–
121. Springer, 1996.

[111] G. Kreisel and H. Putnam. Unableitbarkeitsbeweismethode für den intuitionistis-
chen Aussagenkalül. Archiv für mathematische Logic und Grundlagenforschung,
3:74–78, 1957.

[112] O. Lahav. From frame properties to hypersequent rules in modal logics. In 28th
Annual IEEE/ACM Symposium on Logic in Computer Science (LICS), pages 408–
417, 2013.

[113] J. Lambek. The mathematics of sentence structure. American Mathematical
Monthly, 12:166–178, 1958.

[114] J. Lambek. From categorial grammar to bilinear logic. In K. Dosen and
P. Schroeder-Heister, editors, Substructural Logics, volume 2, pages 207–237. Ox-
ford University Press, 1993.

[115] B. Lellmann. Axioms vs. hypersequent rules with context restrictions: Theory
and applications. In S. Demri, D. Kapur, and C. Weidenbach, editors, Proceedings
of the International Joint Conference on Automated Reasoning (IJCAR), volume
8562 of LNCS, pages 307–321, 2014.

[116] B. Lellmann and D. Pattinson. Cut elimination for shallow modal logics. In Proceed-
ings of Automated Reasoning with Analytic Tableaux and Related Methods, LNCS,
pages 211–225, 2011.

[117] B. Lellmann and D. Pattinson. Correspondence between modal Hilbert axioms and
sequent rules with an application to S5. In D. Galmiche and D. Larchey-Wendling,
editors, Proceedings of Automated Reasoning with Analytic Tableaux and Related
Methods, volume 8123 of LNCS, pages 219–233, 2013.

[118] B. Lellmann and D. Pattinson. Constructing cut free sequent systems with context
restrictions based on classical or intuitionistic logic. In K. Lodaya, editor, Proceed-
ings of the International Conference on Logic and Its Applications (ICLA), volume
7750 of LNCS, pages 148–160, 2014.

[119] J. Łukasiewicz. O logice tojwartosciowej. Ruch Filozoficzny, 5:169–171, 1920.

[120] J. Łukasiewicz and A. Tarski. Untersuchungen über den Aussagenkalkül. Comptes
Rendus des Séances de la Societé des Sciences et des Lettres de Varsovie, Classe
III, 23, 1930.

[121] W. MacCaull. Relational proof system for linear and other substructural logics.
Logic Journal of the IGPL, 5(5):673–697, 1997.

185

[122] H. M. MacNeille. Partially ordered sets. Transactions of the American Mathemat-
ical Society, 42:416–460, 1937.

[123] L. Maksimova. Interpolation properties of superintuitionistic logics. Studia Logica,
38(4):419–428, 1979.

[124] S. Marin and L. Straßburger. Label-free modular systems for classical and intu-
itionistic modal logics. In R. Goré, B. Kooi, and A. Kurucz, editors, Proceedings of
Advances in Modal Logic, volume 10 of College Publications, pages 387–406, 2014.

[125] W. McCune. Prover9 and Mace4. http://www.cs.unm.edu/~mccune/prover9/,
2005–2010.

[126] G. Metcalfe. Proof theory for Casari’s comparative logics. Journal of Logic and
Computation, 16(4):405–422, 2006.

[127] G. Metcalfe and F. Montagna. Substructural fuzzy logics. Journal of Symbolic
Logic, 7(3):834–864, 2007.

[128] G. Metcalfe, N. Olivetti, and D. Gabbay. Sequent and hypersequent calculi for
Lukasiewicz and Abelian logics. ACM Transactions on Computational Logic,
6(3):578–613, 2005.

[129] G. Metcalfe, N. Olivetti, and D. Gabbay. Proof Theory for Fuzzy Logics, volume 36
of Applied Logic Series. Springer, 2009.

[130] F. Montagna and H. Ono. Kripke semantics, undecidability and standard com-
pleteness for Esteva and Godo’s logic MTL∀. Studia Logica, 71(2):227–245, 2002.

[131] S. Negri. Proof analysis in non-classical logics. In Logic Colloquium 2005, pages
107–128. Cambridge University Press, 2007.

[132] S. Negri. Kripke completeness revisited. In G. Primiero and S. Rahman, edi-
tors, Acts of Knowledge - History, Philosophy and Logic, pages 233–266. College
Publications, 2009.

[133] S. Negri. Proof analysis beyond geometric theories: from rule systems to systems
of rules. Journal of Logic and Computation, 2014, in press.

[134] S. Negri and J. von Plato. Structural Proof Theory. Cambridge University Press,
2001.

[135] V. Nigam and D. Miller. Algorithmic specifications in linear logic with subexpo-
nentials. In Proceedings of ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming (PPDP), pages 129–140, 2009.

[136] V. Nigam, E. Pimentel, and G. Reis. An extended framework for specifying and
reasoning about proof systems. Journal of Logic and Computation, 2014, in press.

186

http://www.cs.unm.edu/~mccune/prover9/

[137] V. Nigam, G. Reis, and L. Lima. Quati: An automated tool for proving permutation
lemmas. In S. Demri, D. Kapur, and C. Weidenbach, editors, Proceedings of the
International Joint Conference on Automated Reasoning (IJCAR), LNCS, pages
255–261, 2014.

[138] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for
Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[139] H. J. Ohlbach. Logic engineering – Konstruktion von Logiken. Künstliche Intelli-
genz, 6(3):34–38, 1992.

[140] H. J. Ohlbach. Computer support for the development and investigation of logics.
Logic Journal of the IGPL, 4(1):109–127, 1996.

[141] H. Ono. Substructural logics and residuated lattices – an introduction. In V. F.
Hendricks and J. Malinowski, editors, Trends in Logic: 50 Years of Studia Logica,
volume 21, pages 193–228. Springer, 2003.

[142] E. Orlowska. Relational proof system for relevant logics. Journal of Symbolic Logic,
57(4):1425–1440, 1992.

[143] M. Osorio, J. A. Navarro, and J. Arrazola. Applications of intuitionistic logic in
Answer Set Programming. Theory and Practice of Logic Programming, 4(3):325–
354, 2004.

[144] F. Paoli. Substructural Logics: A Primer. Kluwer Academic Publishers, Dordrecht,
2002.

[145] D. Pattinson and L. Schröder. Generic modal cut elimination applied to conditional
logics. In M. Giese and A. Waaler, editors, Proceedings of Automated Reasoning
with Analytic Tableaux and Related Methods, volume 5607 of LNCS, pages 280–294,
2009.

[146] D. Pearce. Stable inference as intuitionistic validity. Journal of Logic Programming,
38(1):79–91, 1999.

[147] F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical frame-
work for deductive systems. In Proceedings of the International Conference on
Automated Deduction (CADE), volume 1632 of LNCS, pages 202–206, 1999.

[148] N. H. Phuong and V. Kreinovich. Fuzzy logic and its applications in medicine.
International Journal of Medical Informatics, 62(2–3):165–173, 2001.

[149] F. Poggiolesi. The method of tree-hypersequents for modal propositional logic.
In D. Makinson, J. Malinowski, and H. Wansing, editors, Towards Mathematical
Philosophy, volume 28 of Trends in Logic, pages 31–51, 2009.

187

[150] G. Pottinger. Uniform, cut-free formulations of T, S4 and S5 (abstract). Journal
of Symbolic Logic, 48(3):900, 1983.

[151] G. Priest. The logic of paradox. Journal of Philosophical Logic, 8:219–241, 1979.

[152] R. Ramanayake. Embedding the hypersequent calculus in the display calculus.
Journal of Logic and Computation, 2014, in press.

[153] N. Rescher and R. Brandom. The Logic of Inconsistency. Blackwell, Oxford, 1979.

[154] R. Rothenberg. On the relationship between hypersequent calculi and labelled se-
quent calculi for intermediate logics with geometric Kripke semantics. PhD thesis,
University of St. Andrews, 2010.

[155] G. Sambin and S. Valentini. The modal logic of provability. the sequential approach.
Journal of Philosophical Logic, 11:311–342, 1982.

[156] Y. Shramko and H. Wansing. Some useful 16-valued logics: how a computer net-
work should think. Journal of Philosophical Logic, 34:121–153, 2005.

[157] R. Smullyan. First-Order Logic. Springer, Berlin, 1968.

[158] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1987.

[159] L. Straßburger. Cut elimination in nested sequents for intuitionistic modal logics.
In F. Pfenning, editor, Proceedings of the Foundations of Software Science and
Computation Structures, volume 7794 of LNCS, pages 209–224, 2013.

[160] G. Takeuti. Proof Theory (2nd ed.). North-Holland, Amsterdam, 1987.

[161] G. Takeuti and S. Titani. Intuitionistic fuzzy logic and intuitionistic fuzzy set
theory. Journal of Symbolic Logic, 49(3):851–866, 1984.

[162] H. Tews. Formalizing cut elimination of coalgebraic logics in Coq. In Proceedings
of Automated Reasoning with Analytic Tableaux and Related Methods, volume 8123
of LNCS, pages 257–272, 2013.

[163] D. Tishkovsky, R. A. Schmidt, and M. Khodadadi. MetTeL: A tableau prover
with logic-independent inference engine. In Proceedings of Automated Reasoning
with Analytic Tableaux and Related Methods, volume 6793 of LNCS, pages 242–247,
2011.

[164] D. Tishkovsky, R. A. Schmidt, and M. Khodadadi. The tableau prover genera-
tor MetTeL2. In Proceedings of the European Conference on Logics in Artifical
Intelligence (JELIA), LNCS, pages 492–495, 2012.

[165] A. S. Troelstra and H. Schwichtenberg. Basic proof theory (2nd ed.). Cambridge
University Press, New York, 2000.

188

[166] T. Vetterlein and A. Ciabattoni. On the (fuzzy) logical content of CADIAG-2.
Fuzzy Sets and Systems, 161(14):1941–1958, 2010.

[167] L. Viganò. Labelled Non-Classical Logics. Kluwer Academic Publishers, Dordrecht,
2000.

[168] S.-M. Wang. Uninorm logic with the n-potency axiom. Fuzzy Sets and Systems,
205:116–126, 2012.

[169] H. Wansing. Displaying Modal Logic. Trends in Logic. Kluwer Academic Publishers,
Dordrecht, 1998.

[170] H. Wansing. Constructive negation, implication, and co-implication. Journal of
Applied Non-classical Logics, 18(2–3):341–364, 2008.

[171] M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In Proceedings
of Theorem Proving in Higher Order Logic, LNCS, pages 33–38, 2008.

189

	Introduction
	Motivations
	Aims of the Thesis
	Thesis Outline
	Publications

	Preliminaries and Background
	Basic Concepts for Intuitionistic Logic
	Analytic Calculi and Cut Elimination

	TINC: Tools for the Investigation of Non-classical Logics
	TINC in a Nutshell
	Implementation Details
	Overview Code Examples

	Related Work

	Substructural Logics
	Preliminaries
	Theoretical Base and Related Work in Proof Theory
	An Application: Standard Completeness for Extensions of MTL
	Tool: AxiomCalc

	Intermediate Logics
	Preliminaries
	Related Work in Proof Theory
	Towards the Generation of Logical Hypersequent Rules
	Towards a Systematic Procedure for Labelled Calculi
	Tool: Framinator

	Paraconsistent Logics
	Preliminaries
	Related Work in Proof Theory
	Towards Analytic Calculi for Paraconsistent Logics
	Step 1: Automated Generation of Sequent Calculi
	Step 2: Automated Extraction of Semantics
	A Special Case
	Tool: Paralyzer

	Conclusion
	Summary
	Some Open Questions

	Substructural Logics
	Paraconsistent Logics
	TINC: Tool Output
	Example LaTeX-output of AxiomCalc
	Example LaTeX-output of Framinator
	Example LaTeX-output of Paralyzer

	Bibliography

